计算机科学
标杆管理
冷启动(汽车)
水准点(测量)
推荐系统
概率逻辑
机器学习
公制(单位)
基线(sea)
协同过滤
启发式
分类器(UML)
人工智能
数据挖掘
集合(抽象数据类型)
地理
业务
程序设计语言
营销
经济
航空航天工程
工程类
地质学
海洋学
运营管理
大地测量学
作者
Andrew I. Schein,Alexandrin Popescul,Lyle Ungar,David M. Pennock
标识
DOI:10.1145/564376.564421
摘要
We have developed a method for recommending items that combines content and collaborative data under a single probabilistic framework. We benchmark our algorithm against a naïve Bayes classifier on the cold-start problem, where we wish to recommend items that no one in the community has yet rated. We systematically explore three testing methodologies using a publicly available data set, and explain how these methods apply to specific real-world applications. We advocate heuristic recommenders when benchmarking to give competent baseline performance. We introduce a new performance metric, the CROC curve, and demonstrate empirically that the various components of our testing strategy combine to obtain deeper understanding of the performance characteristics of recommender systems. Though the emphasis of our testing is on cold-start recommending, our methods for recommending and evaluation are general.
科研通智能强力驱动
Strongly Powered by AbleSci AI