Dissecting the Behavior of a Promiscuous Solvate Former

衍生工具(金融) 内容(测量理论) Crystal(编程语言) 计算机科学 情报检索 化学 广告 业务 数学 程序设计语言 财务 数学分析
作者
Christopher P. Price,Gary D. Glick,Adam J. Matzger
出处
期刊:Angewandte Chemie [Wiley]
卷期号:45 (13): 2062-2066 被引量:71
标识
DOI:10.1002/anie.200503533
摘要

Angewandte Chemie International EditionVolume 45, Issue 13 p. 2062-2066 Communication Dissecting the Behavior of a Promiscuous Solvate Former† Christopher P. Price, Christopher P. Price Department of Chemistry, University of Michigan, Ann Arbor, MI 48109–1055, USA, Fax: (+1) 734-615-8553Search for more papers by this authorGary D. Glick Prof., Gary D. Glick Prof. Department of Chemistry, University of Michigan, Ann Arbor, MI 48109–1055, USA, Fax: (+1) 734-615-8553Search for more papers by this authorAdam J. Matzger Prof., Adam J. Matzger Prof. [email protected] Department of Chemistry, University of Michigan, Ann Arbor, MI 48109–1055, USA, Fax: (+1) 734-615-8553Search for more papers by this author Christopher P. Price, Christopher P. Price Department of Chemistry, University of Michigan, Ann Arbor, MI 48109–1055, USA, Fax: (+1) 734-615-8553Search for more papers by this authorGary D. Glick Prof., Gary D. Glick Prof. Department of Chemistry, University of Michigan, Ann Arbor, MI 48109–1055, USA, Fax: (+1) 734-615-8553Search for more papers by this authorAdam J. Matzger Prof., Adam J. Matzger Prof. [email protected] Department of Chemistry, University of Michigan, Ann Arbor, MI 48109–1055, USA, Fax: (+1) 734-615-8553Search for more papers by this author First published: 13 March 2006 https://doi.org/10.1002/anie.200503533Citations: 67 † Supported in part by the National Institutes of Health Grant R01 AI47450. We thank GMP|Immunotherapeutics for samples of Bz-423 and Bz-430 and Jeff W. Kampf for the crystal structure determination. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Take any partner: Benzodiazepine derivative Bz-423 (see picture) can be described as an indiscriminate solvate former as it cocrystallizes with a diverse array of small molecules. This behavior was investigated by analysis of the packing efficiency of these crystal forms relative to that of unsolvated Bz-423 and an appropriate model compound. Supporting Information Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2006/z503533_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1For recent examples of studies that employ crystal engineering of pharmaceutical solvates/cocrystals, see: Google Scholar 1aI. D. H. Oswald, D. R. Allan, P. A. McGregor, W. D. S. Motherwell, S. Parsons, C. R. Pulham, Acta Crystallogr. Sect. B 2002, 58, 1057–1066; 10.1107/S0108768102015987 CASPubMedWeb of Science®Google Scholar 1bR. D. B. Walsh, M. W. Bradner, S. Fleischman, L. A. Morales, B. Moulton, N. Rodríguez-Hornedo, M. J. Zaworotko, Chem. Commun. 2003, 186–187; 10.1039/b208574g CASPubMedWeb of Science®Google Scholar 1cJ. F. Remenar, S. L. Morissette, M. L. Peterson, B. Moulton, J. M. MacPhee, H. R. Guzmán, Ö. Almarsson, J. Am. Chem. Soc. 2003, 125, 8456–8457; 10.1021/ja035776p CASPubMedWeb of Science®Google Scholar 1dS. G. Fleischman, S. S. Kuduva, J. A. McMahon, B. Moulton, R. D. B. Walsh, N. Rodríguez-Hornedo, M. J. Zaworotko, Cryst. Growth Des. 2003, 3, 909–919; 10.1021/cg034035x CASWeb of Science®Google Scholar 1eÖ. Almarsson, M. B. Hickey, M. L. Peterson, S. L. Morissette, S. Soukasene, C. McNulty, M. Tawa, J. M. MacPhee, J. F. Remenar, Cryst. Growth Des. 2003, 3, 927–933; 10.1021/cg034058b CASWeb of Science®Google Scholar 1fS. L. Childs, L. J. Chyall, J. T. Dunlap, V. N. Smolenskaya, B. C. Stahly, G. P. Stahly, J. Am. Chem. Soc. 2004, 126, 13335–13342; 10.1021/ja048114o CASPubMedWeb of Science®Google Scholar 1gJ. A. McMahon, J. A. Bis, P. Vishweshwar, T. R. Shattock, O. L. McLaughlin, M. J. Zaworotko, Z. Kristallogr. 2005, 220, 340–350; 10.1524/zkri.220.4.340.61624 CASWeb of Science®Google Scholar 1hA. V. Trask, W. D. S. Motherwell, W. Jones, Cryst. Growth Des. 2005, 5, 1013–1021. 10.1021/cg0496540 CASWeb of Science®Google Scholar 2G. J. Kruger, G. Gafner, Acta Crystallogr. Sect. B 1971, 27, 326–333. 10.1107/S0567740871002176 Web of Science®Google Scholar 3G. J. Kruger, G. Gafner, Acta Crystallogr. Sect. B 1972, 28, 272–283. 10.1107/S0567740872002183 CASWeb of Science®Google Scholar 4F. V. Babilev, V. K. Bel'skii, Y. A. Simonov, A. P. Arzamastsev, Khim. Farm. Zh. 1987, 21, 1275–1280. CASWeb of Science®Google Scholar 5D. S. Hughes, M. B. Hursthouse, T. Threlfall, S. Tavener, Acta Crystallogr. Sect. C 1999, 55, 1831–1833. 10.1107/S0108270199010112 Web of Science®Google Scholar 6A. L. Bingham, D. S. Hughes, M. B. Hursthouse, R. W. Lancaster, S. Tavener, T. L. Threlfall, Chem. Commun. 2001, 603–604. 10.1039/b009540k CASWeb of Science®Google Scholar 7M. Gdaniec, B. T. Ibragimov, S. A. Talipov in Comprehensive Supramolecular Chemistry, Vol. 6 (Eds.: ), Elsevier Sciences, London, 1996, pp. 117–145. Google Scholar 8N. B. Blatt, J. J. Bednarski, R. E. Warner, F. Leonetti, K. M. Johnson, A. Boitano, R. Yung, B. C. Richardson, K. J. Johnson, J. A. Ellman, A. W. Opipari, G. D. Glick, J. Clin. Invest. 2002, 110, 1123–1132. 10.1172/JCI0216029 CASPubMedWeb of Science®Google Scholar 9J. J. Bednarski, R. E. Warner, T. Rao, F. Leonetti, R. Yung, B. C. Richardson, K. J. Johnson, J. A. Ellman, A. W. Opipari, G. D. Glick, Arthritis Rheum. 2003, 46, 757–766. 10.1002/art.10968 CASWeb of Science®Google Scholar 10K. M. Johnson, X. N. Chen, A. Boitano, L. Swenson, A. W. Opipari, G. D. Glick, Chem. Biol. 2005, 12, 485–496. 10.1016/j.chembiol.2005.02.012 CASPubMedWeb of Science®Google Scholar 11Crystal data: Google Scholar 11asolvent-free Bz-423; C27H21ClN2O2, colorless plate crystal of dimensions 0.28×0.20×0.04 mm was analyzed at 123(2) K, orthorhombic, space group Pbca (no. 61), a=14.835(3), b=14.999(3), c=19.901(4) Å, V=4528.4(14) Å3, Z=8, ρcalcd=1.323 g cm−3, μ(MoKα)=0.200 mm−1, F(000)=1840, 3789 unique reflections between 2.90°≤2θ≤24.81°, Tmax=0.99, Tmin=0.95, R1=0.0378, Rw=0.0780; Google Scholar 11bBz-430: C29H23ClN2O2 colorless plate crystal of dimensions 0.12×0.04×0.02 mm was analyzed at 123(2) K, monoclinic, space group P21/c (no. 14), a=9.7205(8), b=19.3671(17), c=12.8434(10), β=104.870(3)°, V=2336.9(3) Å3, Z=4, ρcalcd=1.327 g cm−1, μ(MoKα)=0.193 mm−1, F(000)=967, 2554 unique reflections between 3.02°≤2θ≤21.18°, R1=0.0424, Rw=0.0892; Google Scholar 11cBz-423/acetic acid solvate: C27H21ClN2O2⋅C2H4O2, colorless plate crystal of dimensions 0.36×0.24×0.10 mm was analyzed at 123(2) K, monoclinic, space group P21/c (no. 14), a=9.261(2), b=13.649(3), c=19.753(4) Å, β=97.623(4)°, V=2474.9(9) Å3, Z=4, ρcalcd=1.345 g cm−3, μ(MoKα)=0.193 mm−1, F(000)=1048, 4629 unique reflections between 2.97°≤2θ≤25.65°, Tmax=0.98, Tmin=0.93, R1=0.0428, Rw=0.0881; Google Scholar 11dBz-423/acetonitrile solvate: C27H21ClN2O2⋅C2H3N, colorless plate crystal of dimensions 0.25×0.14×0.05 mm was analyzed at 153(2) K, monoclinic, space group P21/c (no. 14), a=9.310(11), b=13.7802(17), c=19.082(2) Å, β=93.634(2)°, V=2443.2(5) Å3, Z=4, ρcalcd=1.310 g cm−3, μ(MoKα)=0.181 mm−1, F(000)=920, 5610 unique reflections between 1.82°≤2θ≤27.51°, Tmax=0.99, Tmin=0.96, R1=0.0352, Rw=0.0976; Google Scholar 11eBz-423/ethanol solvate: C27H21ClN2O2⋅C2H6O, colorless plate crystal of dimensions 0.32×0.18×0.08 mm was analyzed at 153(2) K, orthorhombic, space group Pbca (no. 61), a=14.7352(11), b=15.3206(11), c=22.1937(17) Å, V=5010.3(6) Å3, Z=8, ρcalcd=1.291 g cm−3, μ(MoKα)=0.186 mm−1, F(000)=2048, 5769 unique reflections between 1.84°≤2θ≤27.57°, Tmax=0.98, Tmin=0.96, R1=0.0901, Rw=0.2224; Google Scholar 11fBz-423/ethyl acetate solvate 2C27H21ClN2O2⋅C4H8O2: colorless block crystal of dimensions 0.50×0.26×0.14 mm was analyzed at 123(2) K, monoclinic, space group P21/n (no. 14), a=16.208(2) b=9.2803(12), c=16.937(2) Å, β=110.161(2)°, V=2391.5(5) Å3, Z=4, ρcalcd=1.347 g cm−3, μ(MoKα)=0.195 mm−1, F(000)=1020, 5930 unique reflections between 3.07°≤2θ≤28.30°, Tmax=0.97, Tmin=0.91, R1=0.0350, Rw=0.0933; Google Scholar 11gBz-423/fumaric acid cocrystal: 2C27H21ClN2O2⋅C4H4O4, colorless plate crystal of dimensions 0.30×0.24×0.08 mm was analyzed at 123(2) K, monoclinic, space group P21/c (no. 14), a=9.0653(13), b=13.7215(19), c=18.753(3) Å, β=93.236(3)°, V=2329.0(6) Å3, Z=4, ρcalcd=1.423 g cm−3, μ(MoKα)=0.205 mm−1, F(000)=1040, 5797 unique reflections between 2.86°≤2θ≤28.37°, Tmax=0.98, Tmin=0.94, R1=0.0412, Rw=0.0886; Google Scholar 11hBz-423/2-propanol solvate: C27H21ClN2O2⋅C3H8O, colorless plate crystal of dimensions 0.40×0.36×0.12 mm was analyzed at 123(2) K, orthorhombic, space group Pbca (no. 61), a=14.418(3), b=15.779(3), c=22.625(4) Å, V=5147.3(16) Å3, Z=8, ρcalcd=1.293 g cm−3, μ(MoKα)=0.183 mm−1, F(000)=2112, 4420 unique reflections between 2.11°≤2θ≤24.78°, Tmax=0.98, Tmin=0.93, R1=0.0339, Rw=0.0805; Google Scholar 11iBz-423/succinic acid cocrystal: 2C27H21ClN2O2⋅C4H6O4, colorless plate block of dimensions 0.44×0.22×0.20 mm was analyzed at 123(2) K, monoclinic, space group P21/c (no. 14), a=9.1098(14), b=13.834(2), c=18.715(2) Å, β=92.223(3)°, V=2356.8(6) Å3, Z=4, ρcalcd=1.409 g cm−3, μ(MoKα)=0.203 mm−1, F(000)=1044, 5860 unique reflections between 2.86°≤2θ≤28.40°, Tmax=0.96, Tmin=0.92, R1=0.0335, Rw=0.0882. Intensity data were collected on a Bruker SMART CCD-based X-ray diffractometer (MoKα=0.71073 Å). The structures were solved by direct methods and refined using the SHELXTL (v6.10 for structures (d) and (e) and v6.12 for all others) software package. All non-hydrogen atoms were refined anisotropically with hydrogen atoms generated at idealized positions and constrained to ride on their parent atoms. CCDC-285005–285013 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Google Scholar 12A. I. Kitaigorodskii, Organic Chemical Crystallography, Consultants Bureau, New York, 1961. Google Scholar 13Packing coefficient is calculated by using the following equation: Ck=Z Vmol Vcell−1, where Vmol is the molecular volume (Å3), Vcell is the volume of the unit cell (Å3), and Z is the number of molecules in the unit cell. Google Scholar 14Molecular volume was calculated with Spartan'04 (Wavefunction Inc.), which employs van der Waals radii in the calculation of molecular volume of 1.75 Å for carbon, 1.78 Å for chlorine, 1.30 Å for fluorine, 1.20 Å for hydrogen, 1.55 Å for nitrogen, 1.52 Å for oxygen, and 1.82 Å for sulfur atoms. For the packing efficiency of the crystal structures of sulfathiazole solvates not found in the CSD (see reference [16]) and for disordered solvate structures, models of sulfathiazole and the various solvent molecules were constructed in Spartan '04 and the equilibrium geometry for each was calculated by using molecular mechanics (MMFF). After geometric minimization, the CH, NH, and OH bonds were normalized to 1.083 Å for CH and 0.983 Å for OH and NH and the molecular volume was calculated. A list of the structures that possess disordered solvent molecules can be found in the Supporting Information. Google Scholar 15Crystal structures of two-component systems containing organic solvent molecules (liquid under ambient conditions) and possessing 3D coordinates were selected from the CSD for each compound. The CH, OH, and NH bonds in each structure were normalized and the molecular volume was calculated (see reference [14]). CSD reference codes for the structures used in the paper: sulfathiazole, SUTHAZ01, SUTHAZ02, SUTHAZ03, SUTHAZ04, SUTHAZ05, BABYIN, BABYOT, and FURDIF; gossypol, AWEXUV, BEMLOU03, BEMLOU12, CUVKEJ20, CUVKUZ20, CUVLAG10, DUBVUR, GOSPOL01, JEGWAT, JIDROD, JIDTIZ10, JIDTOF01, JIDTOF10, JIDVEX10, JIDWEY01, JINFAN, KIVCAT, LOQSEP, RIDNOH, RIDNUN, VAYJUA, VEVMOY, VEVNUF01, VEVRIX, VEVROD, VEVRUJ, VEVSEU, VEVTOF, VEVVUN01, VEVWUO, VEVXAV, VIGVUC, and YEWMUI; Dianin's compound, BEGSUC, DIANCH, DIANET, DIANHP13, HUSXOI, HUSXUO, HUSYAV, HUSYEZ, HUSYID, HUSYOJ, HUSYUP, HUSZAW, HUSZEA, HUSZIE, OBEQUH, PEPTIN, and SIHJEY01; references for these can be found in the Supporting Information. Google Scholar 16For a number of sulfathiazole solvates not found in the CSD, unit-cell constants, and stoichiometry have been reported; see the Supporting Information of reference [6]. The packing coefficients for the acetone, cyclohexanol, cyclohexanone, piperidine, propionitrile, propylene carbonate, sulfolane, and THF solvates were calculated from these data with the caveat that the geometries of both sulfathiazole and the solvent must be assumed, thus making these values somewhat less reliable than those derived from 3D structures. The calculated packing coefficients of these structures range from 0.684 (cyclohexanol) to 0.746 (sulfolane), with an average value of 0.713, which is intermediate to the packing coefficients of the most and least dense polymorphs of sulfathiazole. Google Scholar 17J. L. Flippen, J. Karle, I. L. Karle, J. Am. Chem. Soc. 1970, 92, 3749–3754. 10.1021/ja00715a036 CASWeb of Science®Google Scholar 18L. Pang, E. A. C. Lucken, G. Bernardinelli, J. Am. Chem. Soc. 1990, 112, 8754–8764. 10.1021/ja00180a018 CASWeb of Science®Google Scholar 19F. Imashiro, M. Yoshimura, T. Fujiwara, Acta Crystallogr. Sect. C 1998, 54, 1357–1360. 10.1107/S010827019800451X Web of Science®Google Scholar 20G. D. Enright, C. I. Ratcliffe, J. A. Ripmeester, Mol. Phys. 1999, 97, 1193–1196. CASWeb of Science®Google Scholar 21J. G. Selbo, J. M. Desper, C. J. Eckhardt, J. Inclusion Phenom. Macrocyclic Chem. 2003, 45, 73–78. 10.1023/A:1023046325996 CASWeb of Science®Google Scholar 22R. W. H. Small, Acta Crystallogr. Sect. B 2003, 59, 141–148. 10.1107/S0108768102022395 CASPubMedWeb of Science®Google Scholar 23For rigid molecules, the packing coefficient may be conveniently extracted from the cell parameters and a knowledge of the chemical structure facilitating prescreening studies utilizing only indexed powder X-ray diffraction data. Google Scholar Citing Literature Volume45, Issue13March 20, 2006Pages 2062-2066 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xy发布了新的文献求助10
2秒前
4秒前
Orange应助六只鱼采纳,获得30
4秒前
七月发布了新的文献求助10
5秒前
5秒前
连又完成签到,获得积分10
6秒前
木末辛夷完成签到,获得积分10
6秒前
秘密完成签到,获得积分10
7秒前
8秒前
拽着月亮去乞讨完成签到 ,获得积分10
8秒前
无私秋双发布了新的文献求助10
9秒前
12秒前
12秒前
12秒前
田様应助彪壮的擎汉采纳,获得10
13秒前
寻道图强应助梦曦采纳,获得20
13秒前
15秒前
张作伟发布了新的文献求助10
15秒前
爆米花应助农大彭于晏采纳,获得10
16秒前
18秒前
六只鱼发布了新的文献求助30
18秒前
19秒前
乔心发布了新的文献求助10
21秒前
俊逸的大娘完成签到,获得积分10
24秒前
小明明明发布了新的文献求助10
25秒前
25秒前
菜鸟发布了新的文献求助20
27秒前
勤奋映之完成签到 ,获得积分10
27秒前
28秒前
烟花应助滕擎采纳,获得10
28秒前
29秒前
在水一方应助小明明明采纳,获得10
30秒前
31秒前
精明一寡发布了新的文献求助10
32秒前
122发布了新的文献求助10
32秒前
六只鱼完成签到,获得积分20
32秒前
32秒前
Pikno123发布了新的文献求助10
37秒前
脑洞疼应助追寻奇迹采纳,获得10
38秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2471832
求助须知:如何正确求助?哪些是违规求助? 2138211
关于积分的说明 5448863
捐赠科研通 1862106
什么是DOI,文献DOI怎么找? 926057
版权声明 562747
科研通“疑难数据库(出版商)”最低求助积分说明 495326