原卟啉原氧化酶
化学
三氟甲基
生物测定
嘧啶
立体化学
效力
酶
生物化学
生物
有机化学
体外
遗传学
烷基
作者
Yang Zuo,Qiong‐You Wu,Sun-wen Su,Cong‐Wei Niu,Zhen Xi,Guang‐Fu Yang
标识
DOI:10.1021/acs.jafc.5b05378
摘要
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is known as a key action target for several structurally diverse herbicides. As a continuation of our research work on the development of new PPO-inhibiting herbicides, a series of novel 3-(2'-halo-5'-substituted-benzothiazol-1'-yl)-1-methyl-6-(trifluoromethyl)pyrimidine-2,4-diones 9 were designed and synthesized. The bioassay results indicated that a number of the newly synthesized compounds exhibited higher inhibition activity against tobacco PPO (mtPPO) than the controls, saflufenacil and sulfentrazone. Compound 9F-5 was identified as the most potent inhibitor with a Ki value of 0.0072 μM against mtPPO, showing about 4.2-fold and 1.4-fold higher potency than sulfentrazone (Ki = 0.03 μM) and saflufenacil (Ki = 0.01 μM), respectively. An additional green house assay demonstrated that compound 9F-6 (Ki = 0.012 μM) displayed the most promising postemergence herbicidal activity with a broad spectrum even at a concentration as low as 37.5 g of active ingredient (ai)/ha. Maize exhibits relative tolerance against compound 9F-6 at the dosage of 150 g ai/ha, but it is susceptible to saflufenacil even at 75 g ai/ha. Thus, compound 9F-6 exhibits the potential to be a new herbicide for weed control in maize fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI