PointGLR: Unsupervised Structural Representation Learning of 3D Point Clouds

点云 计算机科学 人工智能 无监督学习 判别式 稳健性(进化) 特征学习 分割 代表(政治) 对象(语法) 抽象 视觉对象识别的认知神经科学 模式识别(心理学) 机器学习 化学 法学 认识论 哲学 基因 政治 生物化学 政治学
作者
Yongming Rao,Jiwen Lu,Jie Zhou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (2): 2193-2207 被引量:7
标识
DOI:10.1109/tpami.2022.3159794
摘要

This work explores the use of global and local structures of 3D point clouds as a free and powerful supervision signal for representation learning. Local and global patterns of a 3D object are closely related. Although each part of an object is incomplete, the underlying attributes about the object are shared among all parts, which makes reasoning about the whole object from a single part possible. We hypothesize that a powerful representation of a 3D object should model the attributes that are shared between parts and the whole object, and distinguishable from other objects. Based on this hypothesis, we propose a new framework to learn point cloud representations by bidirectional reasoning between the local structures at different abstraction hierarchies and the global shape. Moreover, we extend the unsupervised structural representation learning method to more complex 3D scenes. By introducing structural proxies as the intermediate-level representations between local and global ones, we propose a hierarchical reasoning scheme among local parts, structural proxies, and the overall point cloud to learn powerful 3D representations in an unsupervised manner. Extensive experimental results demonstrate that the unsupervised representations can be very competitive alternatives of supervised representations in discriminative power, and exhibit better performance in generalization ability and robustness. Our method establishes the new state-of-the-art of unsupervised/few-shot 3D object classification and part segmentation. We also show our method can serve as a simple yet effective regime for model pre-training on 3D scene segmentation and detection tasks. We expect our observations to offer a new perspective on learning better representations from data structures instead of human annotations for point cloud understanding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧云发布了新的文献求助10
1秒前
Su完成签到,获得积分20
3秒前
4秒前
ccc关闭了ccc文献求助
5秒前
Ace完成签到,获得积分10
6秒前
6秒前
6秒前
Aliothae完成签到,获得积分20
7秒前
herschelwu完成签到,获得积分10
8秒前
9秒前
醉生梦死发布了新的文献求助10
10秒前
星辰大海应助orange采纳,获得10
11秒前
宋岩发布了新的文献求助10
11秒前
简单三问完成签到,获得积分10
13秒前
Orange应助迷路以筠采纳,获得10
16秒前
juziyaya应助羽羽玉采纳,获得30
16秒前
juziyaya应助收手吧大哥采纳,获得30
19秒前
20秒前
小池由希完成签到 ,获得积分10
21秒前
小纪完成签到 ,获得积分10
22秒前
dr_zhoujielong完成签到,获得积分10
28秒前
领导范儿应助多肉葡萄采纳,获得10
29秒前
冰魂应助宋岩采纳,获得10
30秒前
彭于晏应助蓝桉采纳,获得10
31秒前
CodeCraft应助婷婷采纳,获得10
31秒前
32秒前
冷傲的忆秋完成签到,获得积分10
32秒前
chenmeng发布了新的文献求助10
33秒前
加飞猫发布了新的文献求助10
33秒前
33秒前
WW完成签到,获得积分0
34秒前
科研通AI5应助佛系研究僧采纳,获得10
34秒前
36秒前
36秒前
云落发布了新的文献求助10
36秒前
怕孤独的谷波完成签到,获得积分20
37秒前
38秒前
38秒前
38秒前
Ranrunn发布了新的文献求助30
38秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802150
求助须知:如何正确求助?哪些是违规求助? 3347923
关于积分的说明 10335538
捐赠科研通 3063893
什么是DOI,文献DOI怎么找? 1682275
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763977