Advances in Z‐scheme semiconductor photocatalysts for the photoelectrochemical applications: A review

太阳能 光电子学 光催化 异质结 分解水 可再生能源 材料科学 环境污染 能源消耗 计算机科学 工艺工程 环境科学 纳米技术 生化工程 电气工程 工程类 化学 环境保护 催化作用 生物化学
作者
Jiaxin Li,Hao Yuan,Wenjie Zhang,Bingjun Jin,Qi Feng,Jan Huang,Zhengbo Jiao
出处
期刊:Carbon energy [Wiley]
卷期号:4 (3): 294-331 被引量:131
标识
DOI:10.1002/cey2.179
摘要

Abstract With continuous consumption of nonrenewable energy, solar energy has been predicted to play an essential role in meeting the energy demands and mitigating environmental issues in the future. Despite being green, clean and pollution‐free energy, solar energy cannot be adopted directly as it cannot provide sufficiently high energy density to work in the absence of machinery. Thus, it is necessary to develop an effective strategy to convert and store solar energy into chemical energy to achieve social sustainable development using solar energy as the main power source. Photocatalysis, in which semiconductor photocatalysts play a key role, is one of the most promising candidates for realising the effective utilisation of sunlight in a green, low‐cost and environmentally friendly method. The photocatalytic efficiency of photocatalysts is considerably influenced by their compositions. Among the various heterostructures, Z‐scheme heterojunction is one of the most interesting architecture due to its outstanding performance and excellent artificial imitation of photosynthesis. Z‐scheme photocatalysts have attracted considerable attention in the past few decades. Herein, we review contemporary Z‐scheme systems, with a particular focus on mechanistic breakthroughs, and highlight current state‐of‐the‐art systems. Z‐type photocatalysts are classified as traditional, all‐solid‐state, direct Z‐schemes and S‐scheme photocatalysts. The morphology, characterisation and working mechanism of each type of Z‐scheme are discussed in detail. Furthermore, the applications of Z‐scheme in photoelectrochemical water splitting, nitrogen fixation, pollutant degradation and carbon dioxide reduction are illustrated. Finally, we outline the main challenges and potential advances in Z‐scheme architectures, as well as their future development directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助天空没有极限采纳,获得10
1秒前
3秒前
3秒前
研友_O8W2PZ完成签到,获得积分10
4秒前
hkh发布了新的文献求助10
5秒前
湖畔望月寒关注了科研通微信公众号
7秒前
adai完成签到,获得积分10
8秒前
徐蹇发布了新的文献求助10
8秒前
Nature完成签到,获得积分10
9秒前
nini完成签到,获得积分10
10秒前
Masongyang发布了新的文献求助10
10秒前
11秒前
徐蹇完成签到,获得积分10
13秒前
15秒前
15秒前
欢呼的井完成签到 ,获得积分10
16秒前
17秒前
周浩宇完成签到,获得积分10
18秒前
aniywn发布了新的文献求助10
19秒前
21秒前
生生发布了新的文献求助10
22秒前
漫漫完成签到 ,获得积分10
22秒前
23秒前
江凡儿完成签到,获得积分10
24秒前
ultraman80完成签到 ,获得积分10
25秒前
lizhiqian2024发布了新的文献求助10
25秒前
27秒前
生生完成签到,获得积分10
29秒前
30秒前
氢氧化钠Li完成签到,获得积分10
31秒前
cyy完成签到,获得积分10
32秒前
77完成签到,获得积分10
32秒前
aniywn完成签到,获得积分10
32秒前
35秒前
故意的寒安完成签到,获得积分10
35秒前
歇儿哒哒完成签到,获得积分10
36秒前
糟糕的雁菱完成签到 ,获得积分10
36秒前
37秒前
39秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327417
关于积分的说明 10231012
捐赠科研通 3042288
什么是DOI,文献DOI怎么找? 1669966
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804