The rational design of a graphitic carbon nitride-based dual S-scheme heterojunction with energy storage ability as a day/night photocatalyst for formic acid dehydrogenation

光催化 异质结 甲酸 纳米棒 氮化碳 石墨氮化碳 脱氢 材料科学 光化学 化学 化学工程 纳米技术 催化作用 光电子学 有机化学 工程类
作者
Orhan Altan,Elvin Altintas,Sıla Alemdar,Önder Metin
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:441: 136047-136047 被引量:44
标识
DOI:10.1016/j.cej.2022.136047
摘要

Photocatalytic formic acid dehydrogenation (FAD) has been regarded as one of the most promising methods of producing H2 in a sustainable manner. In the photocatalytic FAD reaction, photogenerated holes play an important role in the reaction mechanism and thus in the efficiency of photocatalysts. However, the design of photocatalytic systems capable of generating high hole potential without compromising the reducing ability of the photocatalyst is extremely rare for the FAD reaction. In this respect, we report herein a novel and highly efficient heterojunction photocatalyst composed of 2D graphitic carbon nitride, 2D MnO2, 1D MnOOH, and 0D PdAg alloy nanoparticles, denoted as GCN/MnO2/MnOOH-PdAg, that can create high reduction and oxidation potentials via a dual S-scheme heterojunction. The photocatalysts exhibited a superb photocatalytic activity in the FAD with a record turnover frequency (TOF) of 3919 h−1 under visible light irradiation, which was 6-, 5.2- and 24-times greater than those of GCN-PdAg, GCN/MnO2-PdAg, and MnO2/MnOOH-PdAg heterojunctions, respectively. The structure and dual S-scheme mechanism of the photocatalyst have been clearly demonstrated by extensive instrumental analysis, radical trapping tests, and scavenger experiments. More importantly, it was discovered that the presented photocatalyst continued to function with comparable activity in dark for a prolonged time using the same photocatalytic mechanism. The activity of the photocatalyst in dark was attributed to the utilization of electrons stored on Mn2O3, which was detected as a 4–5 nm thick layer on the surface of MnOOH nanorods. This study, in addition to being the first example of both a “day/night photocatalyst” for FAD with an S-scheme mechanism, also demonstrates for the first time the boosting of FAD via a dual S-scheme heterojunction photocatalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡图图发布了新的文献求助10
刚刚
风中亦旋完成签到,获得积分10
刚刚
猪猪hero发布了新的文献求助10
刚刚
菜菜完成签到 ,获得积分10
1秒前
独立江湖女完成签到 ,获得积分10
3秒前
dyyisash完成签到 ,获得积分10
6秒前
科研野狗完成签到 ,获得积分10
7秒前
如意的泥猴桃完成签到 ,获得积分20
8秒前
LWJ完成签到,获得积分10
9秒前
xzy998应助蹦擦擦采纳,获得10
11秒前
上官若男应助稳重的邑采纳,获得10
12秒前
GRATE完成签到 ,获得积分10
12秒前
13秒前
14秒前
正直涵菱完成签到 ,获得积分10
15秒前
董小姐发布了新的文献求助10
16秒前
16秒前
可爱的函函应助方冰绿采纳,获得10
17秒前
Ning完成签到,获得积分10
18秒前
ShiRz发布了新的文献求助10
20秒前
zrs发布了新的文献求助10
20秒前
长安888完成签到,获得积分10
21秒前
???完成签到,获得积分10
21秒前
22秒前
传奇3应助jason采纳,获得10
23秒前
无限毛豆完成签到 ,获得积分10
24秒前
康康完成签到,获得积分10
24秒前
25秒前
25秒前
我是老大应助zrs采纳,获得10
26秒前
27秒前
鲑鱼完成签到 ,获得积分10
28秒前
浮生若梦完成签到 ,获得积分10
28秒前
welch完成签到,获得积分10
29秒前
30秒前
溯a发布了新的文献求助10
31秒前
wxyes发布了新的文献求助10
32秒前
32秒前
32秒前
田様应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304