Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis

支持向量机 随机森林 机器学习 人工智能 逻辑回归 接收机工作特性 计算机科学 骨质疏松症 人工神经网络 医学 内科学
作者
Yiting Lin,Chao-Yu Chu,Kuo‐Sheng Hung,Chi‐Hua Lu,Edward M. Bednarczyk,Hsiang‐Yin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:225: 107028-107028 被引量:11
标识
DOI:10.1016/j.cmpb.2022.107028
摘要

The specific aim of this study is to develop machine learning models as a clinical approach for personalized treatment of osteoporosis. The model performance on outcome prediction was compared between four machine learning algorithms. Retrospective, electronic clinical data for patients with suspected or confirmed osteoporosis treated at Wan Fang Hospital between 2011 to 2018 were used as inputs for building the following predictive machine learning models,i.e., artificial neural network (ANN), random forest (RF), support vector machine (SVM) and logistic regression (LR) models. The predicted outcome was defined as an increase/decrease in T-score after treatment. A genetic algorithm was employed to select relevant variables as input features for each model; the leave-one-out method was applied for model building and internal validation. The model with best performance was selected by a separate set of testing. Area under the receiver operating characteristic curve, accuracy, precision, sensitivity and F1 score were calculated to evaluate model performance. Main analysis for all the patients with subclinical or confirmed osteoporosis and subgroup analysis for the patients with confirmed osteoporosis (T score < -2.5) were carried out in this study. A genetic algorithm was employed to select 12 to 18 features from all 33 variables for the four models. No difference was found in accuracy (ANN, 71.7%; LR, 70.0%; RF, 75.0%; SVM, 66.7%), precision (ANN, 80.0%; LR, 59.3%; RF, 70.0%; SVM, 63.6%), and AUC (ANN, 0.709; LR, 0.731; RF, 0.719; SVM, 0.702) among the ANN, LR, RF and SVM models. Main analysis in performance revealed significant recall in the LR model, as compared to ANN and SVM model; while subgroup revealed significant recall in ANN model, compared to LR and SVM model. Machine learning-based models hold potential in forecasting the outcomes of treatment for osteoporosis via early initiation of first-line therapy for patients with subclinical disease; or a switch to second-line treatment for patients with a high risk of impending treatment failure. This convenient approach can assist clinicians in adjusting treatment tailored to individual patient for prevention of disease progression or ineffective therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助blue2021采纳,获得10
刚刚
6秒前
7秒前
7秒前
简单以宁2发布了新的文献求助10
10秒前
llllllb发布了新的文献求助10
12秒前
大个应助wanhe采纳,获得10
14秒前
如意发布了新的文献求助10
14秒前
15秒前
U2应助鲸鱼阿扑采纳,获得20
17秒前
尼古拉耶维奇完成签到,获得积分10
19秒前
简单以宁2完成签到,获得积分10
19秒前
喜静完成签到 ,获得积分10
21秒前
充电宝应助Q蒂采纳,获得10
21秒前
英姑应助一北采纳,获得10
22秒前
GD完成签到,获得积分10
23秒前
25秒前
28秒前
29秒前
blue2021发布了新的文献求助10
30秒前
31秒前
一北发布了新的文献求助10
33秒前
zhouzhou发布了新的文献求助200
38秒前
斯文道之发布了新的文献求助10
38秒前
辣辣完成签到,获得积分10
42秒前
43秒前
旺旺碎完成签到 ,获得积分10
46秒前
46秒前
Hou完成签到 ,获得积分10
50秒前
JamesPei应助精明的灵珊采纳,获得30
51秒前
53秒前
chaotianjiao完成签到 ,获得积分10
53秒前
卓天宇完成签到,获得积分10
55秒前
张老师完成签到,获得积分10
56秒前
57秒前
给好评发布了新的文献求助10
57秒前
1分钟前
1分钟前
充电宝应助namelorna采纳,获得10
1分钟前
JamesPei应助落后醉易采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779843
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222351
捐赠科研通 3040435
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798788
科研通“疑难数据库(出版商)”最低求助积分说明 758563