Deep metric learning for few-shot image classification: A Review of recent developments

人工智能 计算机科学 过度拟合 卷积神经网络 深度学习 分类 机器学习 上下文图像分类 公制(单位) 嵌入 模式识别(心理学) 图像(数学) 人工神经网络 运营管理 经济
作者
Xiaoxu Li,Xiaochen Yang,Zhanyu Ma,Jing-Hao Xue
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:138: 109381-109381 被引量:69
标识
DOI:10.1016/j.patcog.2023.109381
摘要

Few-shot image classification is a challenging problem that aims to achieve the human level of recognition based only on a small number of training images. One main solution to few-shot image classification is deep metric learning. These methods, by classifying unseen samples according to their distances to few seen samples in an embedding space learned by powerful deep neural networks, can avoid overfitting to few training images in few-shot image classification and have achieved the state-of-the-art performance. In this paper, we provide an up-to-date review of deep metric learning methods for few-shot image classification from 2018 to 2022 and categorize them into three groups according to three stages of metric learning, namely learning feature embeddings, learning class representations, and learning distance measures. Under this taxonomy, we identify the trends of transitioning from learning task-agnostic features to task-specific features, from simple computation of prototypes to computing task-dependent prototypes or learning prototypes, from using analytical distance or similarity measures to learning similarities through convolutional or graph neural networks. Finally, we discuss the current challenges and future directions of few-shot deep metric learning from the perspectives of effectiveness, optimization and applicability, and summarize their applications to real-world computer vision tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小冯发布了新的文献求助10
1秒前
2秒前
平常的念文完成签到,获得积分10
3秒前
cdercder应助12采纳,获得10
4秒前
希望天下0贩的0应助舒夜采纳,获得10
5秒前
DAMAOMI发布了新的文献求助10
6秒前
蛋炒饭i发布了新的文献求助10
6秒前
我是老大应助温温采纳,获得10
7秒前
9秒前
9秒前
笑点低的孤丹完成签到 ,获得积分10
11秒前
11秒前
感动的雁易完成签到 ,获得积分10
12秒前
雨泽发布了新的文献求助10
14秒前
16秒前
俏皮梦桃发布了新的文献求助10
16秒前
小冯完成签到,获得积分20
16秒前
香蕉觅云应助黄雅静采纳,获得10
16秒前
16秒前
17秒前
17秒前
17秒前
pang发布了新的文献求助30
20秒前
舒夜发布了新的文献求助10
21秒前
21秒前
归尘发布了新的文献求助10
22秒前
谢青发布了新的文献求助10
22秒前
22秒前
25秒前
25秒前
25秒前
mofei完成签到,获得积分10
28秒前
pang完成签到,获得积分20
29秒前
胡图图完成签到 ,获得积分10
29秒前
xxddw发布了新的文献求助10
30秒前
30秒前
桐桐应助北城采纳,获得10
32秒前
34秒前
科研通AI5应助文艺的紫萍采纳,获得10
35秒前
岁月静好Taoyi完成签到 ,获得积分10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798061
求助须知:如何正确求助?哪些是违规求助? 3343561
关于积分的说明 10316564
捐赠科研通 3060257
什么是DOI,文献DOI怎么找? 1679407
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763244