Radiographers’ knowledge, attitudes and expectations of artificial intelligence in medical imaging

劳动力 忧虑 医学教育 感知 人工智能 心理学 医学 计算机科学 政治学 神经科学 认知心理学 法学
作者
Sinead Coakley,Rena Young,Niamh Moore,Andrew England,Alexander T. O’Mahony,Owen J. O’Connor,Michael M. Maher,Mark F. McEntee
出处
期刊:Radiography [Elsevier BV]
卷期号:28 (4): 943-948 被引量:35
标识
DOI:10.1016/j.radi.2022.06.020
摘要

Artificial intelligence (AI) is increasingly utilised in medical imaging systems and processes, and radiographers must embrace this advancement. This study aimed to investigate perceptions, knowledge, and expectations towards integrating AI into medical imaging amongst a sample of radiographers and determine the current state of AI education within the community.A cross-sectional online quantitative study targeting radiographers based in Europe was conducted over ten weeks. Captured data included demographical information, participants' perceptions and understanding of AI, expectations of AI and AI-related educational backgrounds. Both descriptive and inferential statistical techniques were used to analyse the obtained data.A total of 96 valid responses were collected. Of these, 64% correctly identified the true definition of AI from a range of options, but fewer (37%) fully understood the difference between AI, machine learning and deep learning. The majority of participants (83%) agreed they were excited about the advancement of AI, though a level of apprehensiveness remained amongst 29%. A severe lack of education on AI was noted, with only 8% of participants having received AI teachings in their pre-registration qualification.Overall positive attitudes towards AI implementation were observed. The slight apprehension may stem from the lack of technical understanding of AI technologies and AI training within the community. Greater educational programs focusing on AI principles are required to help increase European radiography workforce engagement and involvement in AI technologies.This study offers insight into the current perspectives of European based radiographers on AI in radiography to help facilitate the embracement of AI technology and convey the need for AI-focused education within the profession.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
在水一方应助hay采纳,获得10
2秒前
3秒前
3秒前
斯文可仁完成签到,获得积分10
3秒前
鹿鹿鹿完成签到 ,获得积分10
5秒前
7秒前
烟柳画桥发布了新的文献求助10
7秒前
8秒前
8秒前
ShiRz发布了新的文献求助10
10秒前
科目三应助Emma采纳,获得30
12秒前
14秒前
深情安青应助heiztcasino采纳,获得10
14秒前
Ephemerality完成签到 ,获得积分10
15秒前
16秒前
我是老大应助ZhangKeyan采纳,获得10
18秒前
19秒前
20秒前
小马哥发布了新的文献求助30
20秒前
21秒前
研友_VZG7GZ应助薛定谔的猫采纳,获得10
22秒前
heiztcasino发布了新的文献求助10
24秒前
领导范儿应助HYF采纳,获得10
25秒前
李萍萍完成签到,获得积分10
25秒前
大个应助潘潘采纳,获得10
26秒前
丹丹完成签到 ,获得积分10
26秒前
卡他发布了新的文献求助10
27秒前
27秒前
heiztcasino完成签到,获得积分10
27秒前
漂亮的不言完成签到 ,获得积分10
28秒前
30秒前
脑洞疼应助小马哥采纳,获得10
31秒前
32秒前
卡他完成签到,获得积分10
33秒前
35秒前
ChemPhys完成签到 ,获得积分10
36秒前
ecnu搬砖人完成签到 ,获得积分10
37秒前
37秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776896
求助须知:如何正确求助?哪些是违规求助? 3322293
关于积分的说明 10209682
捐赠科研通 3037643
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757984