SQNN: a spike-wave index quantification neural network with a pre-labeling algorithm for epileptiform activity identification and quantification in children

计算机科学 脑电图 模式识别(心理学) 人工智能 Spike(软件开发) 信号(编程语言) 鉴定(生物学) 语音识别 神经科学 植物 生物 软件工程 程序设计语言
作者
Yang Yu,Yehong Chen,Yuanxiang Li,Zaifen Gao,Zhongtao Gai,Ye Zhou
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (1): 016040-016040 被引量:1
标识
DOI:10.1088/1741-2552/ac542e
摘要

Objective.Electrical status epilepticus during slow sleep (ESES) is a phenomenon identified by strong activation of epileptiform activity in the electroencephalogram (EEG) during sleep. For children disturbed by ESES, spike-wave index (SWI) is defined to quantify the epileptiform activity in the EEG during sleep. Accurate SWI quantification is important for clinical diagnosis and prognosis. To quantify SWI automatically, a deep learning method is proposed in this paper.Approach.Firstly, a pre-labeling algorithm (PreLA) composed of the adaptive wavelet enhanced decomposition and a slow-wave discrimination rule is designed to efficiently label the EEG signal. It enables the collection of large-scale EEG dataset with fine-grained labels. Then, an SWI quantification neural network (SQNN) is constructed to accurately classify each sample point as normal or abnormal and to identify the abnormal events. SWI can be calculated automatically based on the total duration of abnormalities and the length of the signal.Main results.Experiments on two datasets demonstrate that the PreLA is effective and robust for labeling the EEG data and the SQNN accurately and reliably quantifies SWI without using any thresholds. The average estimation error of SWI is 3.12%, indicating that our method is more accurate and robust than experts and previous related works. The processing speed of SQNN is 100 times faster than that of experts.Significance.Deep learning provides a novel approach to automatic SWI quantification and PreLA provides an easy way to label the EEG data with ESES syndromes. The results of the experiments indicate that the proposed method has a high potential for clinical diagnosis and prognosis of epilepsy in children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emper发布了新的文献求助10
2秒前
你博哥完成签到 ,获得积分10
4秒前
欢呼流沙发布了新的文献求助10
4秒前
在水一方应助Sicily采纳,获得10
6秒前
Ava应助爱撒娇的凝安采纳,获得10
8秒前
9秒前
10秒前
顾矜应助威士忌www采纳,获得10
11秒前
科研通AI5应助谦让忆文采纳,获得10
13秒前
herschelwu发布了新的文献求助10
13秒前
忧伤的飞机完成签到,获得积分10
13秒前
14秒前
111完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
子非鱼发布了新的文献求助10
15秒前
16秒前
纯情的天奇完成签到 ,获得积分10
18秒前
105发布了新的文献求助30
18秒前
19秒前
19秒前
20秒前
浩浩发布了新的文献求助10
21秒前
卢敏明发布了新的文献求助10
21秒前
乔达摩悉达多完成签到 ,获得积分10
21秒前
调皮的绿真完成签到,获得积分10
23秒前
Wizard发布了新的文献求助10
24秒前
24秒前
科目三应助俭朴的猫咪采纳,获得10
26秒前
30秒前
31秒前
31秒前
小小完成签到,获得积分10
32秒前
科研通AI5应助浩浩采纳,获得10
33秒前
传奇3应助zzrg采纳,获得10
33秒前
cc完成签到,获得积分10
34秒前
chunjianghua发布了新的文献求助10
35秒前
Jason发布了新的文献求助10
35秒前
薛妖怪完成签到,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669