已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diverse image enhancer for complex underexposed image

人工智能 计算机视觉 色调 计算机科学 亮度 对比度(视觉) 彩色图像 图像处理 图像(数学) 数学 模式识别(心理学) 光学 物理
作者
Ziaur Rahman,Zafar Ali,Inayat Khan,M. Irfan Uddin,Yurong Guan,Zhihua Hu
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (04) 被引量:10
标识
DOI:10.1117/1.jei.31.4.041213
摘要

The visual appearance of images changes in line with varying environmental light conditions. Adjusting the exposure of various distorted images is a highly complex process. Previous approaches have addressed this issue from different viewpoints and attained remarkable progress. However, they either failed to achieve visually pleasing results or were suitable for a single class of images (e.g., underexposed or nonuniform images). To fully consider the exposure in various distorted images, we proposed a diverse image enhancement model that improved the brightness and contrast, processed the colors, and eliminated the hazy effect. Accordingly, an input red green blue color image was transformed into a hue, saturation, value color image. The V component was inverted and enhanced using three steps. In the first step, the hyperbolic and statistical methods were applied, and then their results were combined using an adjusted logarithmic methodology. This method properly adjusted the high-contrast and low-contrast impact while preserving the vital image information. In the second step, the output of the first step was inverted back and fed into a complete optimization algorithm to estimate the illumination map. Then, the exposure ratio map was estimated using an illumination map, which was adjusted using the camera response function. In the third step, a nonlinear stretching function was introduced to control brightness and contrast. For instance, a lower value of α yielded maximum stretching, and a higher value of α eliminated haze in the image to a great extent. Finally, an empirical evaluation and comparison of the most recent state-of-the-art approaches on eight datasets revealed that the proposed model efficiently addressed the exposure in various degraded images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
科研通AI5应助小罗采纳,获得10
1秒前
1秒前
穿山的百足公主完成签到,获得积分10
2秒前
4秒前
善良的剑通应助小顾小顾采纳,获得10
6秒前
7秒前
9秒前
11秒前
ED应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得30
11秒前
我是老大应助科研通管家采纳,获得10
12秒前
13秒前
mukkee发布了新的文献求助10
13秒前
吴文章完成签到 ,获得积分10
15秒前
18秒前
19秒前
ding应助mukkee采纳,获得10
22秒前
23秒前
碎梦星河发布了新的文献求助10
23秒前
26秒前
ronald发布了新的文献求助10
30秒前
30秒前
丘比特应助dai采纳,获得10
31秒前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
32秒前
闪闪书桃完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助20
35秒前
manman完成签到,获得积分20
35秒前
提灯完成签到,获得积分10
37秒前
mislight发布了新的文献求助30
45秒前
46秒前
qingshan完成签到,获得积分10
47秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863821
求助须知:如何正确求助?哪些是违规求助? 3406029
关于积分的说明 10648282
捐赠科研通 3129893
什么是DOI,文献DOI怎么找? 1726162
邀请新用户注册赠送积分活动 831511
科研通“疑难数据库(出版商)”最低求助积分说明 779854