Multi-Granularity Regularized Re-Balancing for Class Incremental Learning

遗忘 计算机科学 粒度 类层次结构 人工智能 正规化(语言学) 机器学习 班级(哲学) 等级制度 理论计算机科学 数据挖掘 哲学 操作系统 经济 程序设计语言 面向对象程序设计 语言学 市场经济
作者
Huitong Chen,Yu Wang,Qinghua Hu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-15 被引量:11
标识
DOI:10.1109/tkde.2022.3188335
摘要

Deep learning models suffer from catastrophic forgetting when learning new tasks incrementally. Incremental learning has been proposed to retain the knowledge of old classes while learning to identify new classes. A typical approach is to use a few exemplars to avoid forgetting old knowledge. In such a scenario, data imbalance between old and new classes is a key issue that leads to performance degradation of the model. Several strategies have been designed to rectify the bias towards the new classes due to data imbalance. However, they heavily rely on the assumptions of the bias relation between old and new classes. Therefore, they are not suitable for complex real-world applications. In this study, we propose an assumption-agnostic method, Multi-Granularity Regularized re-Balancing (MGRB), to address this problem. Re-balancing methods are used to alleviate the influence of data imbalance; however, we empirically discover that they would under-fit new classes. To this end, we further design a novel multi-granularity regularization term that enables the model to consider the correlations of classes in addition to re-balancing the data. A class hierarchy is first constructed by ontology or grouping semantically or visually similar classes. The multi-granularity regularization then transforms the one-hot label vector into a continuous label distribution, which reflects the relations between the target class and other classes based on the constructed class hierarchy. Thus, the model can learn the inter-class relational information, which helps enhance the learning of both old and new classes. Experimental results on both public datasets and a real-world fault diagnosis dataset verify the effectiveness of the proposed method. Code is available at https://github.com/lilyht/CIL-MGRB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yxj关注了科研通微信公众号
2秒前
yangziwei发布了新的文献求助10
3秒前
5秒前
桐桐应助谨慎的雁桃采纳,获得10
6秒前
7秒前
yxj关注了科研通微信公众号
10秒前
10秒前
14秒前
大气的懒羊羊完成签到,获得积分10
15秒前
chujun_cai完成签到 ,获得积分10
17秒前
锅包肉完成签到 ,获得积分10
19秒前
biogarfield完成签到,获得积分10
19秒前
L.G.Y完成签到 ,获得积分10
19秒前
卡卡完成签到,获得积分10
19秒前
科研通AI2S应助dd采纳,获得10
21秒前
谨慎的雁桃完成签到,获得积分10
24秒前
顾矜应助lizhiqian2024采纳,获得10
24秒前
慕青应助lizhiqian2024采纳,获得10
24秒前
25秒前
yangziwei完成签到,获得积分10
26秒前
嗯好22222完成签到 ,获得积分10
26秒前
28秒前
28秒前
29秒前
30秒前
彩色的过客完成签到 ,获得积分10
31秒前
烟花应助Max采纳,获得10
31秒前
白樱恋曲完成签到 ,获得积分10
33秒前
dd发布了新的文献求助10
34秒前
NexusExplorer应助高高的魔镜采纳,获得10
35秒前
35秒前
36秒前
体贴凤灵发布了新的文献求助10
39秒前
hkh发布了新的文献求助10
40秒前
冰魂应助科研通管家采纳,获得150
41秒前
赘婿应助科研通管家采纳,获得10
41秒前
41秒前
酷波er应助Bin_Liu采纳,获得10
42秒前
噜噜噜完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327417
关于积分的说明 10231012
捐赠科研通 3042288
什么是DOI,文献DOI怎么找? 1669966
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804