SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer

计算机科学 融合 人工智能 领域(数学分析) 图像融合 图像(数学) 航程(航空) 透视图(图形) 计算机视觉 模式识别(心理学) 工程类 数学 哲学 语言学 数学分析 航空航天工程
作者
Jiayi Ma,Linfeng Tang,Fan Fan,Jun Huang,Xiaoguang Mei,Yong Ma
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:9 (7): 1200-1217 被引量:637
标识
DOI:10.1109/jas.2022.105686
摘要

This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer, termed as SwinFusion. On the one hand, an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction. More specifically, the proposed method involves an intra-domain fusion unit based on self-attention and an inter-domain fusion unit based on cross-attention, which mine and integrate long dependencies within the same domain and across domains. Through long-range dependency modeling, the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective. In particular, we introduce the shifted windows mechanism into the self-attention and cross-attention, which allows our model to receive images with arbitrary sizes. On the other hand, the multi-scene image fusion problems are generalized to a unified framework with structure maintenance, detail preservation, and proper intensity control. Moreover, an elaborate loss function, consisting of SSIM loss, texture loss, and intensity loss, drives the network to preserve abundant texture details and structural information, as well as presenting optimal apparent intensity. Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-the-art unified image fusion algorithms and task-specific alternatives. Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
陶醉海露发布了新的文献求助10
3秒前
3秒前
shinysparrow应助ED采纳,获得200
3秒前
放青松完成签到,获得积分10
4秒前
星辰大海应助油麦菜采纳,获得10
5秒前
5秒前
随便不放假完成签到 ,获得积分10
6秒前
张雪敏完成签到,获得积分10
6秒前
vennteo应助wyk采纳,获得10
7秒前
珉珉完成签到,获得积分10
7秒前
W_Jnf发布了新的文献求助10
8秒前
Yansz发布了新的文献求助10
8秒前
8秒前
赫灵竹完成签到,获得积分10
8秒前
汉堡包应助清爽含灵采纳,获得10
9秒前
向北游发布了新的文献求助10
10秒前
科研通AI2S应助lily采纳,获得10
10秒前
充电宝应助朝春日走去采纳,获得10
10秒前
12秒前
陶醉海露完成签到,获得积分10
14秒前
vennteo应助Savitr采纳,获得10
14秒前
听风者发布了新的文献求助10
16秒前
油麦菜发布了新的文献求助10
17秒前
田様应助jiangyitiao采纳,获得10
17秒前
研友_VZG7GZ应助xiaomingtongxue采纳,获得10
18秒前
SciGPT应助FlowerC采纳,获得10
18秒前
20秒前
yunjian完成签到,获得积分10
21秒前
JamesPei应助wonder123采纳,获得10
22秒前
温暖的鸿完成签到 ,获得积分10
23秒前
安安完成签到,获得积分10
23秒前
lily发布了新的文献求助10
25秒前
烟花应助Yansz采纳,获得10
25秒前
27秒前
29秒前
chen完成签到 ,获得积分10
30秒前
团团团完成签到 ,获得积分0
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930282
求助须知:如何正确求助?哪些是违规求助? 3475236
关于积分的说明 10985824
捐赠科研通 3205267
什么是DOI,文献DOI怎么找? 1771402
邀请新用户注册赠送积分活动 858902
科研通“疑难数据库(出版商)”最低求助积分说明 796873