清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer

计算机科学 融合 人工智能 领域(数学分析) 图像融合 图像(数学) 航程(航空) 透视图(图形) 计算机视觉 模式识别(心理学) 工程类 数学 哲学 语言学 数学分析 航空航天工程
作者
Jiayi Ma,Linfeng Tang,Fan Fan,Jun Huang,Xiaoguang Mei,Yong Ma
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:9 (7): 1200-1217 被引量:998
标识
DOI:10.1109/jas.2022.105686
摘要

This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer, termed as SwinFusion. On the one hand, an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction. More specifically, the proposed method involves an intra-domain fusion unit based on self-attention and an inter-domain fusion unit based on cross-attention, which mine and integrate long dependencies within the same domain and across domains. Through long-range dependency modeling, the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective. In particular, we introduce the shifted windows mechanism into the self-attention and cross-attention, which allows our model to receive images with arbitrary sizes. On the other hand, the multi-scene image fusion problems are generalized to a unified framework with structure maintenance, detail preservation, and proper intensity control. Moreover, an elaborate loss function, consisting of SSIM loss, texture loss, and intensity loss, drives the network to preserve abundant texture details and structural information, as well as presenting optimal apparent intensity. Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-the-art unified image fusion algorithms and task-specific alternatives. Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
21秒前
23秒前
orixero应助天玄采纳,获得10
25秒前
思源应助天玄采纳,获得10
25秒前
爆米花应助天玄采纳,获得10
25秒前
科研通AI6应助天玄采纳,获得10
25秒前
科研通AI6应助秋半雪采纳,获得10
36秒前
49秒前
量子星尘发布了新的文献求助10
50秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
冷酷的大山完成签到,获得积分10
1分钟前
xh完成签到 ,获得积分10
1分钟前
和风完成签到 ,获得积分10
2分钟前
2分钟前
Funnymudpee发布了新的文献求助10
2分钟前
清脆的大开完成签到,获得积分10
2分钟前
彦子完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
ttimmy完成签到,获得积分10
2分钟前
2分钟前
面汤完成签到 ,获得积分10
2分钟前
Faust发布了新的文献求助10
2分钟前
爆米花应助称心凡霜采纳,获得10
2分钟前
琉璃完成签到,获得积分10
3分钟前
3分钟前
Faust完成签到,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
称心凡霜发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482527
求助须知:如何正确求助?哪些是违规求助? 4583310
关于积分的说明 14389170
捐赠科研通 4512454
什么是DOI,文献DOI怎么找? 2472968
邀请新用户注册赠送积分活动 1459145
关于科研通互助平台的介绍 1432646