SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer

计算机科学 融合 人工智能 领域(数学分析) 图像融合 图像(数学) 航程(航空) 透视图(图形) 计算机视觉 模式识别(心理学) 工程类 数学 哲学 语言学 数学分析 航空航天工程
作者
Jiayi Ma,Linfeng Tang,Fan Fan,Jun Huang,Xiaoguang Mei,Yong Ma
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:9 (7): 1200-1217 被引量:719
标识
DOI:10.1109/jas.2022.105686
摘要

This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer, termed as SwinFusion. On the one hand, an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction. More specifically, the proposed method involves an intra-domain fusion unit based on self-attention and an inter-domain fusion unit based on cross-attention, which mine and integrate long dependencies within the same domain and across domains. Through long-range dependency modeling, the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective. In particular, we introduce the shifted windows mechanism into the self-attention and cross-attention, which allows our model to receive images with arbitrary sizes. On the other hand, the multi-scene image fusion problems are generalized to a unified framework with structure maintenance, detail preservation, and proper intensity control. Moreover, an elaborate loss function, consisting of SSIM loss, texture loss, and intensity loss, drives the network to preserve abundant texture details and structural information, as well as presenting optimal apparent intensity. Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-the-art unified image fusion algorithms and task-specific alternatives. Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘿嘿发布了新的文献求助30
1秒前
李健的小迷弟应助龙研采纳,获得10
2秒前
正直涵菱发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
5秒前
6秒前
科研通AI5应助英勇羿采纳,获得10
7秒前
8秒前
tl发布了新的文献求助10
9秒前
9秒前
powero发布了新的文献求助10
9秒前
10秒前
文右三完成签到,获得积分10
10秒前
MchemG应助ho采纳,获得30
10秒前
刘梦通关注了科研通微信公众号
11秒前
不配.应助xiaosu采纳,获得30
12秒前
蘑菇发布了新的文献求助10
12秒前
李爱国应助strings采纳,获得10
13秒前
金刚大王发布了新的文献求助10
13秒前
lianglimay发布了新的文献求助10
14秒前
ss发布了新的文献求助30
14秒前
14秒前
14秒前
JC完成签到,获得积分10
15秒前
寰宇完成签到,获得积分10
15秒前
ll发布了新的文献求助10
15秒前
龙研发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
Ray发布了新的文献求助10
19秒前
君大帅完成签到,获得积分10
22秒前
科小白给科小白的求助进行了留言
22秒前
桐桐应助宠仙采纳,获得10
22秒前
Aintzane关注了科研通微信公众号
24秒前
谨慎鞅完成签到,获得积分10
24秒前
ss完成签到,获得积分10
26秒前
yellow发布了新的文献求助30
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
An account of the genus Dioscorea in the East, Part 2. The species which twine to the right 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4268517
求助须知:如何正确求助?哪些是违规求助? 3799548
关于积分的说明 11909480
捐赠科研通 3446458
什么是DOI,文献DOI怎么找? 1890719
邀请新用户注册赠送积分活动 941456
科研通“疑难数据库(出版商)”最低求助积分说明 845635