材料科学
锆
原子单位
比例(比率)
变形(气象学)
断裂(地质)
人工神经网络
原子间势
锆合金
位错
冶金
计算机科学
机器学习
分子动力学
计算化学
复合材料
物理
化学
量子力学
作者
Manura Liyanage,D. Reith,Volker Eyert,W.A. Curtin
标识
DOI:10.1103/physrevmaterials.6.063804
摘要
The mechanical performance---including deformation, fracture and radiation damage---of zirconium is determined at the atomic scale. With Zr and its alloys extensively used in the nuclear industry, understanding that atomic scale behavior is crucial. The defects controlling that performance are at size scales far larger than accessible by first principles methods, necessitating the use of semiempirical interatomic potentials. Existing potentials for Zr are not sufficiently quantitative, nor easily extendable to alloys, oxides, or hydrides. To overcome these issues, a neural network machine learning potential (NNP) is developed here within the Behler-Parrinello framework for Zr. With a careful choice of descriptors of the atomic environments and the creation of a first-principles training dataset that includes a wide spectrum of configurations of metallurgical relevance, a very accurate NNP is demonstrated. Specifically, the Zr NNP yields a good description of dislocation structures and their relative energies and fracture behavior, along with bulk, surface, and point-defect properties and structures, and significantly outperforms the best available traditional potentials. Results here will enable large-scale simulations of complex processes and provide the basis for future extensions to alloys, oxides, and hydrides.
科研通智能强力驱动
Strongly Powered by AbleSci AI