Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients With Pulmonary Hypertension

医学 内科学 心脏病学 队列 肺动脉高压 接收机工作特性 肺动脉
作者
Chih‐Min Liu,Edward S.C. Shih,Jhih-Yu Chen,Chih-Han Huang,I‐Chien Wu,Pei‐Fen Chen,Satoshi Higa,Nobumori Yagi,Yu‐Feng Hu,Ming‐Jing Hwang,Shih‐Ann Chen
出处
期刊:JACC: Asia [Elsevier]
卷期号:2 (3): 258-270 被引量:16
标识
DOI:10.1016/j.jacasi.2022.02.008
摘要

Pulmonary hypertension is a disabling and life-threatening cardiovascular disease. Early detection of elevated pulmonary artery pressure (ePAP) is needed for prompt diagnosis and treatment to avoid detrimental consequences of pulmonary hypertension.This study sought to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model to identify patients with ePAP and related prognostic implications.From a hospital-based ECG database, the authors extracted the first pairs of ECG and transthoracic echocardiography taken within 2 weeks of each other from 41,097 patients to develop an AI model for detecting ePAP (PAP > 50 mm Hg by transthoracic echocardiography). The model was evaluated on independent data sets, including an external cohort of patients from Japan.Tests of 10-fold cross-validation neural-network deep learning showed that the area under the receiver-operating characteristic curve of the AI model was 0.88 (sensitivity 81.0%; specificity 79.6%) for detecting ePAP. The diagnostic performance was consistent across age, sex, and various comorbidities (diagnostic odds ratio >8 for most factors examined). At 6-year follow-up, the patients predicted by the AI model to have ePAP were independently associated with higher cardiovascular mortality (HR: 3.69). Similar diagnostic performance and prediction for cardiovascular mortality could be replicated in the external cohort.The ECG-based AI model identified patients with ePAP and predicted their future risk for cardiovascular mortality. This model could serve as a useful clinical test to identify patients with pulmonary hypertension so that treatment can be initiated early to improve their survival prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
米尔的猫发布了新的文献求助10
2秒前
Joker发布了新的文献求助20
4秒前
邓炎林完成签到 ,获得积分10
5秒前
5秒前
6秒前
思源应助米尔的猫采纳,获得10
7秒前
kudoukoumei发布了新的文献求助10
7秒前
fancyking发布了新的文献求助10
8秒前
桃子爱学习完成签到,获得积分10
14秒前
Waris完成签到 ,获得积分10
14秒前
Ava应助kudoukoumei采纳,获得10
15秒前
科研通AI5应助秋子采纳,获得10
17秒前
GIA完成签到,获得积分10
18秒前
梁小氓完成签到 ,获得积分10
20秒前
贤惠的早晨完成签到,获得积分10
21秒前
科研通AI2S应助清茶韵心采纳,获得10
21秒前
HEIKU应助WYN采纳,获得10
21秒前
科研通AI5应助爱吃黄豆采纳,获得10
23秒前
怕孤独的草莓完成签到,获得积分10
24秒前
阿托品完成签到 ,获得积分10
29秒前
32秒前
深情安青应助贱小贱采纳,获得10
33秒前
刘帅发布了新的文献求助20
35秒前
36秒前
搜集达人应助希希采纳,获得10
39秒前
39秒前
40秒前
genau000完成签到 ,获得积分10
41秒前
冷静映安完成签到,获得积分10
41秒前
淡淡桐完成签到,获得积分10
42秒前
归尘发布了新的文献求助10
45秒前
科研通AI2S应助徐佳乐采纳,获得10
46秒前
47秒前
Kwanman完成签到,获得积分10
47秒前
HEIKU应助科研通管家采纳,获得10
47秒前
NexusExplorer应助科研通管家采纳,获得10
47秒前
脑洞疼应助科研通管家采纳,获得10
47秒前
搜集达人应助科研通管家采纳,获得10
47秒前
情怀应助科研通管家采纳,获得10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780310
求助须知:如何正确求助?哪些是违规求助? 3325580
关于积分的说明 10223667
捐赠科研通 3040766
什么是DOI,文献DOI怎么找? 1668988
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648