Rechargeable Lithium Metal Pouch Cell Development

阳极 锂(药物) 电解质 材料科学 金属锂 阴极 石墨 比能量 化学工程 纳米技术 化学 电气工程 复合材料 电极 工程类 物理 医学 物理化学 量子力学 内分泌学
作者
Owen Crowther
出处
期刊:Meeting abstracts 卷期号:MA2021-01 (1): 20-20
标识
DOI:10.1149/ma2021-01120mtgabs
摘要

Commercially available Li-ion batteries using graphite or graphite-silicon blended anodes are currently approaching a cell level specific energy of 300 Wh kg −1 . The use of lithium metal instead as an anode an intriguing possibility to further increase cell level specific energies to 400 Wh kg −1 and beyond. Lithium is an ideal anode because it is the lightest metal and highly electronegative. However, attempts to commercialize cells using lithium metal anodes have been slowed by poor cycle life and safety issues. This is because nonuniform lithium plating leads to the growth of dendrites that cause loss of active lithium and can eventually lead to internal cell shorts. Safe cell cycle life must be improved to 50-100 cycles for special purpose applications like unmanned aerial vehicles, >300 cycles for portable power applications and >1000 cycles for electric vehicle applications. The performance of prototype cells developed at EaglePicher Technologies using lithium metal anode will be highlighted. The figure below on the left shows the specific discharge energy of a 2.5 Ah prototype pouch cell using a lithium anode, high nickel cathode and nonaqueous electrolyte. The cell demonstrates an extremely high specific energy of >400 Wh kg −1 at low rates. The effect of electrolyte on capacity retention is shown in the figure below on the right. The optimized electrolyte demonstrates good retention to >50 cycles. This presentation will focus on design considerations for pouch cells with lithium anodes, as well as improving the cycle life and safety characteristics of these cells. Prototype performance data including cycle life, rate capability, temperature effects and safety testing will be presented. EaglePicher Technologies would like to acknowledge the US Army DEVCOM C5ISR Center in Aberdeen Proving Ground, Maryland for funding this research. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lqqq完成签到 ,获得积分10
1秒前
1秒前
苻人英完成签到,获得积分10
1秒前
2秒前
激昂的飞松完成签到,获得积分10
3秒前
MADAO发布了新的文献求助200
5秒前
lihua完成签到,获得积分10
5秒前
无花果应助panbaobao采纳,获得10
7秒前
陈晨发布了新的文献求助30
7秒前
西安浴日光能赵炜完成签到,获得积分10
11秒前
研友_Z30GJ8发布了新的文献求助10
11秒前
14秒前
16秒前
科目三应助leo采纳,获得10
17秒前
18秒前
瘦瘦发布了新的文献求助10
19秒前
搜集达人应助zgt01采纳,获得10
19秒前
didi完成签到,获得积分10
20秒前
灵犀完成签到,获得积分10
20秒前
21秒前
天天天王完成签到,获得积分10
21秒前
结实芸遥发布了新的文献求助10
21秒前
laber应助gloval采纳,获得30
22秒前
苹果蛋完成签到,获得积分10
23秒前
25秒前
菏西发布了新的文献求助10
25秒前
27秒前
28秒前
情怀应助冷艳的纸鹤采纳,获得10
28秒前
蕃茄可乐完成签到 ,获得积分10
28秒前
29秒前
十一完成签到,获得积分10
30秒前
小刘完成签到,获得积分10
31秒前
瘦瘦完成签到,获得积分10
31秒前
信仰发布了新的文献求助10
33秒前
33秒前
Voskov完成签到,获得积分10
34秒前
llllllb发布了新的文献求助10
34秒前
野性的曼香完成签到,获得积分10
34秒前
Lucas应助Culto采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779823
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222188
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758552