Artificial intelligence in gynecologic cancers: Current status and future challenges – A systematic review

医学 子宫内膜癌 宫颈癌 阴道镜检查 卵巢癌 磁共振成像 癌症 人工智能 放射科 肿瘤科 妇科 内科学 计算机科学
作者
Munetoshi Akazawa,Kazunori Hashimoto
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:120: 102164-102164 被引量:106
标识
DOI:10.1016/j.artmed.2021.102164
摘要

Over the past years, the application of artificial intelligence (AI) in medicine has increased rapidly, especially in diagnostics, and in the near future, the role of AI in medicine will become progressively more important. In this study, we elucidated the state of AI research on gynecologic cancers. A search was conducted in three databases—PubMed, Web of Science, and Scopus—for research papers dated between January 2010 and December 2020. As keywords, we used "artificial intelligence," "deep learning," "machine learning," and "neural network," combined with "cervical cancer," "endometrial cancer," "uterine cancer," and "ovarian cancer." We excluded genomic and molecular research, as well as automated pap-smear diagnoses and digital colposcopy. Of 1632 articles, 71 were eligible, including 34 on cervical cancer, 13 on endometrial cancer, three on uterine sarcoma, and 21 on ovarian cancer. A total of 35 studies (49%) used imaging data and 36 studies (51%) used value-based data as the input data. Magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, cytology, and hysteroscopy data were used as imaging data, and the patients' backgrounds, blood examinations, tumor markers, and indices in pathological examination were used as value-based data. The targets of prediction were definitive diagnosis and prognostic outcome, including overall survival and lymph node metastasis. The size of the dataset was relatively small because 64 studies (90%) included less than 1000 cases, and the median size was 214 cases. The models were evaluated by accuracy scores, area under the receiver operating curve (AUC), and sensitivity/specificity. Owing to the heterogeneity, a quantitative synthesis was not appropriate in this review. In gynecologic oncology, more studies have been conducted on cervical cancer than on ovarian and endometrial cancers. Prognoses were mainly used in the study of cervical cancer, whereas diagnoses were primarily used for studying ovarian cancer. The proficiency of the study design for endometrial cancer and uterine sarcoma was unclear because of the small number of studies conducted. The small size of the dataset and the lack of a dataset for external validation were indicated as the challenges of the studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feihua1完成签到 ,获得积分10
1秒前
hj发布了新的文献求助10
3秒前
hj完成签到,获得积分10
14秒前
稳重乌冬面完成签到 ,获得积分10
14秒前
慕青应助H-kevin.采纳,获得10
16秒前
阿健完成签到,获得积分10
21秒前
24秒前
不想洗碗完成签到 ,获得积分10
25秒前
xsc完成签到,获得积分10
26秒前
大聪明完成签到,获得积分10
27秒前
僦是卜够完成签到 ,获得积分10
30秒前
32秒前
许鸽完成签到,获得积分10
34秒前
marc107完成签到,获得积分10
42秒前
运敬完成签到 ,获得积分10
45秒前
48秒前
优雅莞完成签到,获得积分10
50秒前
封闭货车完成签到 ,获得积分10
51秒前
渔夫发布了新的文献求助10
52秒前
55秒前
Ya完成签到 ,获得积分10
56秒前
57秒前
叛逆黑洞完成签到 ,获得积分10
58秒前
chenying完成签到 ,获得积分10
58秒前
橙花完成签到 ,获得积分10
59秒前
渔夫完成签到,获得积分20
1分钟前
芒果完成签到 ,获得积分10
1分钟前
逍遥呱呱完成签到 ,获得积分10
1分钟前
falling_learning完成签到 ,获得积分10
1分钟前
21GolDiamond完成签到,获得积分10
1分钟前
1分钟前
1分钟前
魔幻的妖丽完成签到 ,获得积分10
1分钟前
xs完成签到,获得积分10
1分钟前
1分钟前
xs发布了新的文献求助10
1分钟前
史萌完成签到,获得积分20
1分钟前
1分钟前
典雅三颜完成签到 ,获得积分10
1分钟前
碧蓝可仁完成签到 ,获得积分10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4112483
求助须知:如何正确求助?哪些是违规求助? 3650868
关于积分的说明 11560169
捐赠科研通 3355294
什么是DOI,文献DOI怎么找? 1843186
邀请新用户注册赠送积分活动 909298
科研通“疑难数据库(出版商)”最低求助积分说明 826209