Transfer learning: improving neural network based prediction of earthquake ground shaking for an area with insufficient training data

震中 数据集 震级(天文学) 卷积神经网络 学习迁移 人工神经网络 培训(气象学) 地震学 集合(抽象数据类型) 原始数据 计算机科学 预警系统 训练集 地质学 波形 地震预报 人工智能 地理 气象学 电信 天文 物理 程序设计语言 雷达
作者
Dario Jozinović,Anthony Lomax,Ivan Štajduhar,Alberto Michelini
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:229 (1): 704-718 被引量:49
标识
DOI:10.1093/gji/ggab488
摘要

SUMMARY In a recent study, we showed that convolutional neural networks (CNNs) applied to network seismic traces can be used for rapid prediction of earthquake peak ground motion intensity measures (IMs) at distant stations using only recordings from stations near the epicentre. The predictions are made without any previous knowledge concerning the earthquake location and magnitude. This approach differs significantly from the standard procedure adopted by earthquake early warning systems that rely on location and magnitude information. In the previous study, we used 10 s, raw, multistation (39 stations) waveforms for the 2016 earthquake sequence in central Italy for 915 M ≥ 3.0 events (CI data set). The CI data set has a large number of spatially concentrated earthquakes and a dense network of stations. In this work, we applied the same CNN model to an area of central western Italy. In our initial application of the technique, we used a data set consisting of 266 M ≥ 3.0 earthquakes recorded by 39 stations. We found that the CNN model trained using this smaller-sized data set performed worse compared to the results presented in the previously published study. To counter the lack of data, we explored the adoption of ‘transfer learning’ (TL) methodologies using two approaches: first, by using a pre-trained model built on the CI data set and, next, by using a pre-trained model built on a different (seismological) problem that has a larger data set available for training. We show that the use of TL improves the results in terms of outliers, bias and variability of the residuals between predicted and true IM values. We also demonstrate that adding knowledge of station relative positions as an additional layer in the neural network improves the results. The improvements achieved through the experiments were demonstrated by the reduction of the number of outliers by 5 per cent, the residuals R median by 39 per cent and their standard deviation by 11 per cent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重母鸡完成签到 ,获得积分10
1秒前
认真的弼完成签到,获得积分10
2秒前
辛勤的泽洋完成签到 ,获得积分10
4秒前
笨笨山芙完成签到 ,获得积分10
12秒前
Mason完成签到,获得积分10
12秒前
allrubbish完成签到,获得积分10
14秒前
小海完成签到,获得积分10
18秒前
19秒前
方方完成签到 ,获得积分10
20秒前
小树完成签到 ,获得积分10
20秒前
黑发纳兹完成签到,获得积分10
21秒前
marc107完成签到,获得积分10
25秒前
深情安青应助何博采纳,获得10
26秒前
黑发纳兹发布了新的文献求助10
26秒前
研友_8Y26PL完成签到 ,获得积分10
26秒前
相南相北完成签到 ,获得积分10
27秒前
cm完成签到,获得积分10
28秒前
傻傻的磬完成签到 ,获得积分10
34秒前
饱满烙完成签到 ,获得积分10
34秒前
NexusExplorer应助黑发纳兹采纳,获得10
37秒前
38秒前
吱吱吱完成签到 ,获得积分10
39秒前
明理问柳完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助30
44秒前
落后十八发布了新的文献求助10
44秒前
够了完成签到 ,获得积分10
46秒前
wang完成签到,获得积分10
47秒前
小田完成签到 ,获得积分10
47秒前
俏皮元珊完成签到 ,获得积分10
51秒前
刚子完成签到 ,获得积分10
54秒前
Likz完成签到,获得积分10
55秒前
丘比特应助科研通管家采纳,获得10
56秒前
康复小白完成签到 ,获得积分10
1分钟前
海森堡完成签到,获得积分10
1分钟前
陶世立完成签到 ,获得积分10
1分钟前
我的白起是国服完成签到 ,获得积分10
1分钟前
那小子真帅完成签到,获得积分10
1分钟前
搜集达人应助友好采蓝采纳,获得10
1分钟前
胖胖完成签到 ,获得积分0
1分钟前
jiangjiang完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008763
求助须知:如何正确求助?哪些是违规求助? 3548409
关于积分的说明 11298823
捐赠科研通 3283064
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220