<title>Mathematical model of the two-point bending test for strength measurement of optical fibers</title>

弯曲 光纤 材料科学 非线性系统 压力(语言学) 张力(地质) 剪切(地质) 边值问题 纤维 极限抗拉强度 玻璃纤维 剪应力 复合材料 机械 光学 物理 数学 数学分析 语言学 哲学 量子力学
作者
L.S. Srubshchik
出处
期刊:Proceedings of SPIE 卷期号:3848: 157-166 被引量:3
标识
DOI:10.1117/12.372768
摘要

The mathematical and numerical analysis of two nonlinear problems of solid mechanics related to the breaking strength of coated optical glass fibers are presented. Both of these problems are concerned with the two-point bending technique which measures the strength of optical fibers by straining them in a bending mode between two parallel plates. The plates are squeezed together until the fiber fractures. The process gives a measurement of fiber strength. The present theory of this test is based on the elastica theory of an unshearable and inextensible rod. However, within the limits of the elastics theory the tensile and shear stresses cannot be determined. In this paper we study the behavior of optical glass fiber on the base of a geometrically exact nonlinear Cosserat theory in which a rod can suffer flexure, extension, and shear. We adopt the specific nonlinear stress-strain relations in silica and titania-doped silica glass fibers and show that it does not yield essential changes in the results as compared with the results for the linear stress-strain relations. We obtain the governing equations of the motion of the fiber in the two-point bending test taking into account the friction between the test fiber and the rigid plates. We develop the computational methods to solve the initial and equilibrium free-boundary nonlinear planar problems. We derive formulas for tensile and shear stresses which allow us to calculate tension in the fiber. The numerical results show that frictional forces play an important role. The interaction of optical fiber and rigid plates is treated by means of the classical contact theory.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助李哈哈采纳,获得10
刚刚
1秒前
清辉月凝发布了新的文献求助10
1秒前
英姑应助一心采纳,获得10
1秒前
1秒前
明理的道天完成签到,获得积分10
2秒前
meimei发布了新的文献求助10
2秒前
2秒前
闯关的KiKi发布了新的文献求助10
2秒前
情怀应助四体不勤采纳,获得10
3秒前
longquit完成签到,获得积分10
3秒前
善学以致用应助阳炎采纳,获得10
4秒前
郭竞阳发布了新的文献求助10
4秒前
4秒前
桐桐应助初之采纳,获得10
4秒前
4秒前
Jasper应助xianyu采纳,获得10
5秒前
5秒前
5秒前
Nara2021完成签到,获得积分10
5秒前
zxizx发布了新的文献求助10
6秒前
彭于晏应助华华采纳,获得10
6秒前
6秒前
情怀应助MCS采纳,获得10
6秒前
6秒前
深情安青应助hoya采纳,获得10
7秒前
小二郎应助meimei采纳,获得10
7秒前
7秒前
JianDan发布了新的文献求助10
7秒前
7秒前
7秒前
东方元语应助ddz采纳,获得20
8秒前
酷波er应助陈陈采纳,获得10
8秒前
酷波er应助如意的凡英采纳,获得10
8秒前
mmmm发布了新的文献求助10
8秒前
8秒前
8秒前
幽默的山雁完成签到,获得积分10
9秒前
9秒前
科研通AI6应助华杰采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710