光容积图
信号处理
计算机科学
血糖自我监测
信号(编程语言)
血糖监测
远程病人监护
人工智能
模式识别(心理学)
糖尿病
计算机视觉
数字信号处理
连续血糖监测
医学
计算机硬件
血糖性
内分泌学
放射科
程序设计语言
滤波器(信号处理)
作者
Gaobo Zhang,Zhen Mei,Yuan Zhang,Xuesheng Ma,Benny Lo,Dongyi Chen,Yuan‐Ting Zhang
标识
DOI:10.1109/tii.2020.2975222
摘要
Blood glucose level needs to be monitored regularly to manage the health condition of hyperglycemic patients. The current glucose measurement approaches still rely on invasive techniques which are uncomfortable and raise the risk of infection. To facilitate daily care at home, in this article, we propose an intelligent, noninvasive blood glucose monitoring system which can differentiate a user's blood glucose level into normal, borderline, and warning based on smartphone photoplethysmography (PPG) signals. The main implementation processes of the proposed system include 1) a novel algorithm for acquiring PPG signals using only smartphone camera videos; 2) a fitting-based sliding window algorithm to remove varying degrees of baseline drifts and segment the signal into single periods; 3) extracting characteristic features from the Gaussian functions by comparing PPG signals at different blood glucose levels; 4) categorizing the valid samples into three glucose levels by applying machine learning algorithms. Our proposed system was evaluated on a data set of 80 subjects. Experimental results demonstrate that the system can separate valid signals from invalid ones at an accuracy of 97.54% and the overall accuracy of estimating the blood glucose levels reaches 81.49%. The proposed system provides a reference for the introduction of noninvasive blood glucose technology into daily or clinical applications. This article also indicates that smartphone-based PPG signals have great potential to assess an individual's blood glucose level.
科研通智能强力驱动
Strongly Powered by AbleSci AI