线粒体生物发生
吡咯喹啉醌
有氧运动
耐力训练
内科学
内分泌学
医学
最大VO2
线粒体
化学
生物化学
心率
辅因子
血压
酶
作者
Paul S. Hwang,Steven B. Machek,Thomas D. Cardaci,Dylan T. Wilburn,Caelin S. Kim,Emiliya S. Suezaki,Darryn S. Willoughby
标识
DOI:10.1080/07315724.2019.1705203
摘要
Objective: Pyrroloquinoline quinone (PQQ) is a novel supplement involved in processes such as mitochondrial biogenesis and cellular energy metabolism. Since endurance exercise and PQQ exhibit similar mechanisms for mitochondrial biogenesis, it is plausible that PQQ may have ergogenic value. Therefore, the purpose of this study was to examine the effects of a six-week endurance exercise training program on mitochondrial biogenesis and aerobic performance in non-endurance-trained males.Methods: Twenty-three males were randomized to consume 20 mg/day of PQQ or placebo (PLC). Both groups followed a supervised six-week endurance exercise training program. Body composition was assessed by dual-energy-x-ray-absorptiometry (DEXA). Aerobic exercise performance and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a biochemical marker for mitochondrial biogenesis, were assessed before and after the six-week endurance training/supplementation program.Results: There were no significant differences between groups in aerobic performance after endurance-training (p > 0.05). However, there were significant improvements in peak oxygen consumption (VO2peak) and total exercise test duration after endurance-training, irrespective of group (p < 0.05). The PQQ group had a significant increase in PGC-1α protein levels from baseline to post endurance training compared to PLC (p < 0.05). Furthermore, the PQQ group had higher PGC-1α protein levels after 6 weeks of endurance training compared to PLC (p < 0.05).Conclusions: Supplementation of PQQ does not appear to elicit any ergogenic effects regarding aerobic performance or body composition but appears to impact mitochondrial biogenesis by way of significant elevations in PGC-1α protein content.
科研通智能强力驱动
Strongly Powered by AbleSci AI