3D Bioprinting-Tunable Small-Diameter Blood Vessels with Biomimetic Biphasic Cell Layers

材料科学 管腔(解剖学) 血管 生物医学工程 明胶 纳米技术 细胞外基质 血管平滑肌 脚手架 生物物理学 细胞生物学 化学 平滑肌 生物 生物化学 医学 内分泌学
作者
Xuan Zhou,Margaret Nowicki,Hongbing Sun,Sung Yun Hann,Haitao Cui,Timothy Esworthy,James Lee,Michael W. Plesniak,Lijie Grace Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (41): 45904-45915 被引量:71
标识
DOI:10.1021/acsami.0c14871
摘要

Blood vessel damage resulting from trauma or diseases presents a serious risk of morbidity and mortality. Although synthetic vascular grafts have been successfully commercialized for clinical use, they are currently only readily available for large-diameter vessels (>6 mm). Small-diameter vessel (<6 mm) replacements, however, still present significant clinical challenges worldwide. The primary objective of this study is to create novel, tunable, small-diameter blood vessels with biomimetic two distinct cell layers [vascular endothelial cell (VEC) and vascular smooth muscle cell (VSMC)] using an advanced coaxial 3D-bioplotter platform. Specifically, the VSMCs were laden in the vessel wall and VECs grew in the lumen to mimic the natural composition of the blood vessel. First, a novel bioink consisting of VSMCs laden in gelatin methacryloyl (GelMA)/polyethylene(glycol)diacrylate/alginate and lyase was designed. This specific design is favorable for nutrient exchange in an ambient environment and simultaneously improves laden cell proliferation in the matrix pore without the space restriction inherent with substance encapsulation. In the vessel wall, the laden VSMCs steadily grew as the alginate was gradually degraded by lyase leaving more space for cell proliferation in matrices. Through computational fluid dynamics simulation, the vessel demonstrated significantly perfusable and mechanical properties under various flow velocities, flow viscosities, and temperature conditions. Moreover, both VSMCs in the scaffold matrix and VECs in the lumen steadily proliferated over time creating a significant two-cell-layered structure. Cell proliferation was confirmed visually through staining the markers of alpha-smooth muscle actin and cluster of differentiation 31, commonly tied to angiogenesis phenomena, in the vessel matrices and lumen, respectively. Furthermore, the results were confirmed quantitatively through gene analysis which suggested good angiogenesis expression in the blood vessels. This study demonstrated that the printed blood vessels with two distinct cell layers of VECs and VSMCs could be potential candidates for clinical small-diameter blood vessel replacement applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
polar完成签到,获得积分10
刚刚
lllllcc发布了新的文献求助10
1秒前
杨小姐发布了新的文献求助10
1秒前
1秒前
体贴向珊应助DIY101采纳,获得10
3秒前
孟祥雷完成签到,获得积分10
3秒前
科研通AI2S应助坚强元枫采纳,获得10
4秒前
搜集达人应助妮儿采纳,获得10
4秒前
Caism应助willam采纳,获得10
5秒前
CipherSage应助ss采纳,获得30
5秒前
辛勤怀亦发布了新的文献求助10
5秒前
7秒前
8秒前
果果完成签到,获得积分10
8秒前
9秒前
研友_VZG7GZ应助DSH采纳,获得10
10秒前
10秒前
英姑应助笨笨手套采纳,获得10
11秒前
艾七七完成签到,获得积分10
11秒前
shinysparrow应助su采纳,获得10
12秒前
妮儿完成签到,获得积分10
12秒前
赘婿应助叶文轩采纳,获得10
12秒前
大蜜蜂发布了新的文献求助10
13秒前
shinysparrow应助AmberShine采纳,获得10
13秒前
ou应助saiint采纳,获得10
14秒前
李健的小迷弟应助ZLQ采纳,获得10
14秒前
顾矜应助lllllcc采纳,获得10
14秒前
Getlogger完成签到,获得积分10
15秒前
15秒前
16秒前
刘喵喵发布了新的文献求助10
16秒前
清塘夜谈发布了新的文献求助10
16秒前
隐形曼青应助兴奋的渊思采纳,获得10
16秒前
16秒前
辛勤怀亦完成签到,获得积分20
17秒前
暖夏完成签到 ,获得积分10
17秒前
Liiii完成签到,获得积分10
17秒前
19秒前
刘小花完成签到,获得积分10
19秒前
不能熬夜发布了新的文献求助10
20秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 400
薩提亞模式團體方案對青年情侶輔導效果之研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2386215
求助须知:如何正确求助?哪些是违规求助? 2092585
关于积分的说明 5264687
捐赠科研通 1819499
什么是DOI,文献DOI怎么找? 907537
版权声明 559181
科研通“疑难数据库(出版商)”最低求助积分说明 484794