聚类分析
元数据
计算机科学
脚本语言
自动化
相似性(几何)
数据挖掘
表达式(计算机科学)
计算生物学
特征(语言学)
模式识别(心理学)
人工智能
生物
工程类
程序设计语言
操作系统
哲学
图像(数学)
机械工程
语言学
作者
Yihan Zhang,Luning Yang,Vladimir Brusic
标识
DOI:10.1109/bibm49941.2020.9313510
摘要
We designed and implemented an automated system, named Pierse for pattern recognition of single cell transcriptomics (SCT) data. The Pierse system takes sparse matrices and corresponding metadata as input to generate SCDC profiles (SCT gene expression profiles characteristic of types or subtypes of cells). These profiles can be used for profile comparison, feature extraction, and differential gene expression analysis. Hierarchical clustering is used for similarity analysis between SCDC profiles and resulting heatmaps are produced. We performed a demonstration study to test functional modules in the Pierse system. To improve efficiency, we deployed parallel programming scripts and implemented efficient matrix analysis functions in the demonstration study.
科研通智能强力驱动
Strongly Powered by AbleSci AI