神经形态工程学
尖峰神经网络
计算机科学
爆裂
控制重构
生物神经元模型
神经元
Spike(软件开发)
人工智能
人工神经网络
神经科学
生物系统
嵌入式系统
生物
软件工程
作者
Xiao Yu,Y. F. Liu,Bihua Zhang,Peng Chen,Huaze Zhu,Enhui He,Jiayi Zhao,Wenju Huo,Xiaofei Jin,Xumeng Zhang,Hao Jiang,De Ma,Qian Zheng,Huajin Tang,Peng Lin,Wei Kong,Gang Pan
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2025-02-05
卷期号:11 (6)
被引量:2
标识
DOI:10.1126/sciadv.adr6733
摘要
Biological neurons use diverse temporal expressions of spikes to achieve efficient communication and modulation of neural activities. Nonetheless, existing neuromorphic computing systems mainly use simplified neuron models with limited spiking behaviors due to high cost of emulating these biological spike patterns. Here, we propose a compact reconfigurable neuron design using the intrinsic dynamics of a NbO 2 -based spiking unit and excellent tunability in an electrochemical memory (ECRAM) to emulate the fast-slow dynamics in a bio-plausible neuron. The resistance of the ECRAM was effective in tuning the temporal dynamics of the membrane potential, contributing to flexible reconfiguration of various bio-plausible firing modes, such as phasic and burst spiking, and exhibiting adaptive spiking behaviors in changing environment. We used the bio-plausible neuron model to build spiking neural networks with bursting neurons and demonstrated improved classification accuracies over simplified models, showing great promises for use in more bio-plausible neuromorphic computing systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI