A road adhesion coefficient estimation method based on feature screening and ensemble learning

计算机科学 过度拟合 人工神经网络 人工智能 卷积神经网络 特征(语言学) 感知器 加速度 机器学习 一般化 算法 模式识别(心理学) 数学 语言学 哲学 数学分析 物理 经典力学
作者
Guan Zhou,Chenxi Gao,Yuanlong Wang
标识
DOI:10.1177/09544070251319071
摘要

The road adhesion coefficient is an important parameter that affects the acceleration, steering, and braking performance of vehicles. Accurately estimating the road adhesion coefficient can ensure the performance of vehicle active safety systems and reduce the risk of accidents such as rear-end collisions and skidding during vehicle operation. Existing estimation methods do not take into account the overfitting problem that is easily caused by high dimensionality of features, as well as the degradation of estimation accuracy due to different intervals of superiority of the performance of a single model structure. To address these issues, this paper proposes a method for estimating the road adhesion coefficient based on feature screening and ensemble learning. Firstly, dynamic parameters related to the road adhesion coefficient are determined through dynamic analysis. The F-test regression is used to select dynamic parameters that have a strong correlation with the road adhesion coefficient, reducing the feature dimensionality to improve model training speed and generalization. Secondly, to combine the estimation results of multiple models, a stacked generalization (SG) model is established using three basic models: gated recurrent neural network (GRU), long short-term memory networks (LSTM), and convolutional neural network (CNN). A multilayer perceptron is used as the meta-learner to estimate the road adhesion coefficient. Finally, the Bayesian optimization algorithm (BO) is introduced to optimize the hyperparameters of the meta-model network, such as the number of layers, optimizer, and dropout rate, in order to construct an optimized stacked generalization model and improve the estimation accuracy of the road adhesion coefficient. Simulation results demonstrate that, compared to a single model, the optimized stacked generalization model can effectively improve the estimation accuracy of the road adhesion coefficient while ensuring real-time estimation. It also exhibits strong robustness and generalization ability in different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助sfsdfs采纳,获得10
刚刚
pluto应助Heartune采纳,获得50
刚刚
miqilin完成签到,获得积分10
1秒前
upsoar发布了新的文献求助10
2秒前
4秒前
沐风完成签到,获得积分20
4秒前
Ava应助高淑桐采纳,获得10
4秒前
小铁匠完成签到,获得积分20
5秒前
Firstoronre发布了新的文献求助30
5秒前
5秒前
周师辰发布了新的文献求助10
7秒前
gsji完成签到 ,获得积分10
9秒前
xuuuu发布了新的文献求助10
10秒前
丘比特应助CYY采纳,获得10
11秒前
二呆完成签到 ,获得积分10
11秒前
金熙美发布了新的文献求助10
11秒前
14秒前
踏实啤酒发布了新的文献求助10
14秒前
ee关闭了ee文献求助
14秒前
16秒前
16秒前
maodou关注了科研通微信公众号
17秒前
维多利亚少年完成签到,获得积分10
17秒前
xuuuu完成签到,获得积分10
20秒前
21秒前
21秒前
25秒前
科研通AI5应助森宝采纳,获得50
25秒前
搜集达人应助99v587采纳,获得10
26秒前
Wang完成签到,获得积分10
28秒前
雨雨完成签到,获得积分10
28秒前
Li发布了新的文献求助10
29秒前
30秒前
万能图书馆应助Bin_Liu采纳,获得10
32秒前
秋风今是完成签到 ,获得积分10
33秒前
命运完成签到,获得积分10
34秒前
36秒前
ee发布了新的文献求助10
36秒前
dnmd完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779966
求助须知:如何正确求助?哪些是违规求助? 3325374
关于积分的说明 10222718
捐赠科研通 3040551
什么是DOI,文献DOI怎么找? 1668879
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612