Dose prediction via deep learning to enhance treatment planning of lung radiotherapy including simultaneous integrated boost techniques

放射治疗计划 医学 放射治疗 药方 医学物理学 剂量学 核医学 肺癌 工作流程 机器学习 人工智能 计算机科学 放射科 数据库 肿瘤科 药理学
作者
Wenhua Cao,Mary Gronberg,Stephen Bilton,Hana Baroudi,Skylar Gay,C Peeler,Zhongxing Liao,Thomas J. Whitaker,Karen E. Hoffman,Laurence E. Court
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17692
摘要

Abstract Background Recent studies have shown deep learning techniques are able to predict three‐dimensional (3D) dose distributions of radiotherapy treatment plans. However, their use in dose prediction for treatments with varied prescription doses including simultaneous integrated boost (SIB), that is, using multiple prescription doses within the same plan, and benefit in improving plan quality should be validated. Purpose To investigate the feasibility and potential benefit of using deep learning to predict dose distribution of volumetric modulated arc therapy (VMAT) including SIB techniques and improve treatment planning for patients with lung cancer. Methods The dose prediction model was trained with 93 retrospective clinical VMAT plans for patients with lung cancer from our institutional patient database. The prescription doses of these plans ranged from 35 to 72 Gy, with various fractionation schemes. We used a 3D U‐Net architecture to predict 3D dose distributions with 75 plans for training and 18 plans for testing. Model input consisted of computed tomography (CT) images, target and normal tissue contours and prescription doses. We first evaluated model accuracy by comparing the predicted and clinical plan doses for the test set, and then performed replanning according to predicted dose distributions. Furthermore, we evaluated the model prospectively in an additional set of 10 patients from our institution by two approaches where dose prediction was either blinded or provided to treatment planners. We then assessed whether dose prediction could identify suboptimal plan quality and how it affects plan quality if adopted in clinical planning workflow. Results The dose prediction model achieved good agreement between the predicted and clinical plan dose distributions, with a mean dose difference of −0.49 ± 0.54 Gy across the test set. The replanning study guided by dose prediction showed that a small subset of the original plans could benefit from improvements regarding sparing of the spinal cord and esophagus. The analysis of the prospective dataset, with initial and final clinical plans generated in the absence of dose prediction, showed that the predicted doses were able to identify possible improvements of target coverage and normal tissue sparing in the initial plans similar to those made by the final plans for majority of the patients, but in varied magnitudes. Moreover, the plans generated with dose prediction guidance were able to consistently improve normal tissue sparing compared to the plans generated without dose prediction guidance. Conclusions We demonstrated that our deep learning model can consistently predict high quality VMAT lung plans for a variety of prescription doses. The dose prediction tool was also effective in identifying suboptimal plan quality, suggesting its potential benefit in automated treatment planning and evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kaylee发布了新的文献求助10
2秒前
玉玉应助哒哒采纳,获得10
3秒前
不配.应助范innovation采纳,获得20
4秒前
4秒前
慕青应助昏睡的洋葱采纳,获得10
5秒前
Masaccy完成签到,获得积分10
7秒前
执着的采枫完成签到 ,获得积分10
7秒前
小蘑菇应助dd99081采纳,获得10
7秒前
小二郎应助符从丹采纳,获得10
9秒前
思源应助严千亦采纳,获得10
10秒前
aaa4发布了新的文献求助10
11秒前
烟花应助Shellingford采纳,获得10
13秒前
14秒前
葛二蛋完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
18秒前
玉玉应助张晓倩采纳,获得10
18秒前
星辰大海应助小为采纳,获得10
20秒前
潘辉发布了新的文献求助10
20秒前
28秒前
田様应助啰啰采纳,获得10
28秒前
严千亦完成签到,获得积分10
29秒前
Hao完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
orixero应助难过的远航采纳,获得10
36秒前
37秒前
情怀应助笑点低凝荷采纳,获得10
38秒前
40秒前
momomi完成签到,获得积分10
40秒前
41秒前
41秒前
43秒前
44秒前
啰啰发布了新的文献求助10
44秒前
dd99081发布了新的文献求助10
44秒前
xixi0816发布了新的文献求助60
45秒前
如意冰棍完成签到 ,获得积分10
46秒前
852应助wx1310采纳,获得10
46秒前
果小镁发布了新的文献求助30
48秒前
任性迎南完成签到,获得积分20
48秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4254267
求助须知:如何正确求助?哪些是违规求助? 3787005
关于积分的说明 11885993
捐赠科研通 3437442
什么是DOI,文献DOI怎么找? 1886557
邀请新用户注册赠送积分活动 937734
科研通“疑难数据库(出版商)”最低求助积分说明 843384