亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EpiSemble: A Novel Ensemble-based Machine-learning Framework for Prediction of DNA N6-methyladenine Sites Using Hybrid Features Selection Approach for Crops

人工智能 机器学习 特征选择 支持向量机 随机森林 计算机科学 集成学习 阿达布思 梯度升压 决策树 朴素贝叶斯分类器 生物信息学 集合预报 人工神经网络 DNA甲基化 树(集合论) 生物 数学 数学分析 基因表达 基因 生物化学
作者
Dwijesh Chandra Mishra,Dipro Sinha,Tanwy Dasmandal,Md. Yeasin,Anil Rai,Sunil Archak
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (7): 587-597 被引量:4
标识
DOI:10.2174/1574893618666230316151648
摘要

Aim: The study aimed to develop a robust and more precise 6mA methylation prediction tool that assists researchers in studying the epigenetic behaviour of crop plants. Background: N6-methyladenine (6mA) is one of the predominant epigenetic modifications involved in a variety of biological processes in all three kingdoms of life. While in vitro approaches are more precise in detecting epigenetic alterations, they are resource-intensive and time-consuming. Artificial intelligence- based in silico methods have helped overcome these bottlenecks Methods: A novel machine learning framework was developed through the incorporation of four techniques: ensemble machine learning, hybrid approach for feature selection, the addition of features, such as Average Mutual Information Profile (AMIP), and bootstrap samples. In this study, four different feature sets, namely di-nucleotide frequency, GC content, AMIP, and nucleotide chemical properties were chosen for the vectorization of DNA sequences. Nine machine learning models, including support vector machine, random forest, k-nearest neighbor, artificial neural network, multiple logistic regression, decision tree, naïve Bayes, AdaBoost, and gradient boosting were employed using relevant features extracted through the feature selection module. The top three best-performing models were selected and a robust ensemble model was developed to predict sequences with 6mA sites. Results: EpiSemble, a novel ensemble model was developed for the prediction of 6mA methylation sites. Using the new model, an improvement in accuracy of 7.0%, 3.74%, and 6.65% was achieved over existing models for RiceChen, RiceLv, and Arabidopsis datasets, respectively. An R package, EpiSemble, based on the new model was developed and made available at https://cran.rproject. org/web/packages/EpiSemble/index.html. Conclusion: The EpiSemble model added AMIP as a novel feature, integrated feature selection modules, bootstrapping of samples, and ensemble technique to achieve an improved output for accurate prediction of 6mA sites in plants. To our knowledge, this is the first R package developed for predicting epigenetic sites of genomes in crop plants, which is expected to help plant researchers in their future explorations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李剑鸿发布了新的文献求助50
16秒前
30秒前
李剑鸿发布了新的文献求助50
34秒前
43秒前
香蕉觅云应助科研通管家采纳,获得10
45秒前
rrrrrrry发布了新的文献求助10
48秒前
1分钟前
1分钟前
不打烊吗发布了新的文献求助10
1分钟前
李爱国应助不打烊吗采纳,获得30
1分钟前
孙燕完成签到,获得积分10
1分钟前
2分钟前
成就丸子完成签到 ,获得积分10
2分钟前
zhj发布了新的文献求助10
2分钟前
大个应助爱听歌笑寒采纳,获得10
2分钟前
zhj完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
郭497发布了新的文献求助10
2分钟前
aprise完成签到 ,获得积分10
2分钟前
卑微学术人完成签到 ,获得积分10
2分钟前
烟花应助爱听歌笑寒采纳,获得10
2分钟前
CodeCraft应助郭497采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
lsx完成签到,获得积分10
3分钟前
Jasper应助爱听歌笑寒采纳,获得10
3分钟前
轻松小张完成签到,获得积分10
3分钟前
3分钟前
4分钟前
魔幻的妖丽完成签到 ,获得积分10
4分钟前
cxm完成签到 ,获得积分10
4分钟前
andrele发布了新的文献求助10
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
FashionBoy应助天真的雁露采纳,获得10
4分钟前
5分钟前
5分钟前
火星完成签到 ,获得积分10
5分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360038
捐赠科研通 3068736
什么是DOI,文献DOI怎么找? 1685237
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766033