Health-aware food recommendation system with dual attention in heterogeneous graphs

计算机科学 推荐系统 图形 对偶(语法数字) 机器学习 背景(考古学) 人工智能 无监督学习 数据科学 情报检索 理论计算机科学 生物 文学类 艺术 古生物学
作者
Saman Forouzandeh,Mehrdad Rostami,Kamal Berahmand,Razieh Sheikhpour
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107882-107882 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.107882
摘要

Recommender systems (RS) have been increasingly applied to food and health. However, challenges still remain, including the effective incorporation of heterogeneous information and the discovery of meaningful relationships among entities in the context of food and health recommendations. To address these challenges, we propose a novel framework, the Health-aware Food Recommendation System with Dual Attention in Heterogeneous Graphs (HFRS-DA), for unsupervised representation learning on heterogeneous graph-structured data. HFRS-DA utilizes an attention technique to reconstruct node features and edges and employs a dual hierarchical attention mechanism for enhanced unsupervised learning of attributed graph representations. HFRS-DA addresses the challenge of effectively leveraging the heterogeneous information in the graph and discovering meaningful semantic relationships between entities. The framework analyzes recipe components and their neighbours in the heterogeneous graph and can discover popular and healthy recipes, thereby promoting healthy eating habits. We compare HFRS-DA using the Allrecipes dataset and find that it outperforms all the related methods from the literature. Our study demonstrates that HFRS-DA enhances the unsupervised learning of attributed graph representations, which is important in scenarios where labelled data is scarce or unavailable. HFRS-DA can generate node embeddings for unused data effectively, enabling both inductive and transductive learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ronll完成签到,获得积分20
2秒前
单薄的竺完成签到,获得积分10
3秒前
朱博完成签到,获得积分10
4秒前
菜小芽发布了新的文献求助10
5秒前
奋斗的夜山完成签到 ,获得积分10
6秒前
xinanan完成签到,获得积分10
8秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
9秒前
Akim应助gfbh采纳,获得10
9秒前
kevin完成签到,获得积分10
11秒前
凉栀完成签到,获得积分10
12秒前
小二郎应助自觉紫安采纳,获得10
13秒前
FashionBoy应助cc采纳,获得10
14秒前
15秒前
生物科研小白完成签到 ,获得积分10
15秒前
萧水白发布了新的文献求助10
15秒前
16秒前
Akim应助面面采纳,获得10
17秒前
仁者无惧完成签到 ,获得积分10
17秒前
lhy完成签到,获得积分10
17秒前
Dr_zsc完成签到,获得积分10
18秒前
单薄的竺发布了新的文献求助10
22秒前
22秒前
22秒前
gkk完成签到,获得积分20
23秒前
苏雨康完成签到,获得积分10
25秒前
可爱的函函应助yuyuyuan采纳,获得10
26秒前
cc发布了新的文献求助10
28秒前
大约在冬季完成签到,获得积分10
29秒前
gaobowang完成签到,获得积分10
30秒前
31秒前
32秒前
32秒前
33秒前
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757