Probabilistic Caching Strategy and TinyML-Based Trajectory Planning in UAV-Assisted Cellular IoT System

计算机科学 概率逻辑 弹道 物联网 蜂窝无线电 计算机网络 分布式计算 实时计算 人工智能 基站 嵌入式系统 物理 天文
作者
Xin Gao,Xue Wang,Zhihong Qian
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21227-21238 被引量:1
标识
DOI:10.1109/jiot.2024.3360444
摘要

Unmanned aerial vehicles (UAVs) deployed as an aerial assisted base station has the characteristics of flexibility and mobility. As an effective way to reduce the communication pressure of network center, content edge caching combined with UAV-assisted network is a promising solution to release the surge of network data traffic pressure. This paper studies the probabilistic caching strategy in UAV-assisted IoT system which supports device-to-device (D2D) communication and edge caching. Firstly, a three-tier heterogeneous model including user devices (UDs), ground small base stations (SBSs) and UAV is proposed. Considering the random characteristics of user movement and the interference characteristics between different nodes, the cache hit probability and successful transmission probability under different content transmission modes are derived by using stochastic geometry. On this basis, the total offloading probability is derived. The joint caching strategy of UD, SBS and UAV is solved with the goal of maximizing cache hit probability and successful offloading probability, respectively. For the mobile deployment of UAV, considering the limited computing resources and battery endurance of UAV, to enable the UAV to provide services to requesting UDs as soon as possible, this paper first uses tiny machine learning (TinyML) to predict the requesting probability of UDs, and then designs a UAV path planning algorithm to cover all users with high requesting probability in the shortest time. Through simulation analysis, we compared the performance of the two proposed caching strategies and found that the strategy of maximizing successful offloading probability has more advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nick完成签到,获得积分10
刚刚
慎ming发布了新的文献求助80
2秒前
zyc发布了新的文献求助10
3秒前
Sicily发布了新的文献求助10
3秒前
5秒前
NexusExplorer应助xgx984采纳,获得10
6秒前
7秒前
Emper发布了新的文献求助10
10秒前
你博哥完成签到 ,获得积分10
12秒前
欢呼流沙发布了新的文献求助10
12秒前
在水一方应助Sicily采纳,获得10
14秒前
Ava应助爱撒娇的凝安采纳,获得10
16秒前
17秒前
18秒前
顾矜应助威士忌www采纳,获得10
19秒前
科研通AI5应助谦让忆文采纳,获得10
21秒前
herschelwu发布了新的文献求助10
21秒前
忧伤的飞机完成签到,获得积分10
21秒前
22秒前
111完成签到 ,获得积分10
22秒前
22秒前
23秒前
23秒前
子非鱼发布了新的文献求助10
23秒前
24秒前
纯情的天奇完成签到 ,获得积分10
26秒前
105发布了新的文献求助30
26秒前
27秒前
27秒前
28秒前
浩浩发布了新的文献求助10
29秒前
卢敏明发布了新的文献求助10
29秒前
乔达摩悉达多完成签到 ,获得积分10
29秒前
调皮的绿真完成签到,获得积分10
31秒前
Wizard发布了新的文献求助10
32秒前
32秒前
科目三应助俭朴的猫咪采纳,获得10
34秒前
38秒前
39秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669