纳米颗粒
化学
银纳米粒子
核化学
抗菌活性
透射电子显微镜
化学工程
材料科学
纳米技术
细菌
遗传学
生物
工程类
作者
Siyu Zhou,Haonan Peng,Aiqing Zhao,Runguan Zhang,Ting Li,Xingbin Yang,Dehui Lin
标识
DOI:10.1016/j.ijbiomac.2024.129392
摘要
The aim of this study was to compare the characterization of bacterial cellulose nanofibers/Ag nanoparticles (BCNs/Ag nanoparticles) obtained by three different pretreatment methods of BCNs (no pretreatment, sodium hydroxide activation pretreatment and TEMPO-mediated oxidation pretreatment), which were recoded as N-BCNs/Ag nanoparticles, A-BCNs/Ag nanoparticles and O-BCNs/Ag nanoparticles, respectively. The results of scanning electron microscopy and transmission electron microscopy showed the prepared Ag nanoparticles by three different pretreatment methods were spherical and dispersed on the surface of BCNs, while the Ag nanoparticles in O-BCNs/Ag nanoparticles displayed the smallest diameter with a value of 20.25 nm and showed the most uniform dispersion on the surface of BCNs. The ICP-MS result showed O-BCNs/Ag nanoparticles had the highest content of Ag nanoparticles with a value of 2.98 wt%, followed by A-BCNs/Ag nanoparticles (1.53 wt%) and N-BCNs/Ag nanoparticles (0.84 wt%). The cytotoxicity assessment showed that the prepared BCNs/Ag nanoparticles were relatively safe. Furthermore, the O-BCNs/Ag nanoparticles had the best antioxidant and antibacterial activities as compared with the other two types of BCNs/Ag nanoparticles, where O-BCNs/Ag nanoparticles destroyed the structure of bacterial cell membranes to lead the leakage of intracellular components. This study showed that O-BCNs/Ag nanoparticles as antibacterial agents have great potential in food packaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI