Characteristics of Resting-State Electroencephalogram Network in α-Band of Table Tennis Athletes

运动员 静息状态功能磁共振成像 脑功能偏侧化 脑电图 心理学 认知 表(数据库) 物理医学与康复 物理疗法 计算机科学 神经科学 医学 数据挖掘
作者
Jilong Shi,Fatima A. Nasrallah,Xuechen Mao,Qin Huang,Jun Pan,An-Min Li
出处
期刊:Brain Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (3): 222-222 被引量:1
标识
DOI:10.3390/brainsci14030222
摘要

Background: Table tennis athletes have been extensively studied for their cognitive processing advantages and brain plasticity. However, limited research has focused on the resting-state function of their brains. This study aims to investigate the network characteristics of the resting-state electroencephalogram in table tennis athletes and identify specific brain network biomarkers. Methods: A total of 48 healthy right-handed college students participated in this study, including 24 table tennis athletes and 24 controls with no exercise experience. Electroencephalogram data were collected using a 64-conductive active electrode system during eyes-closed resting conditions. The analysis involved examining the average power spectral density and constructing brain functional networks using the weighted phase-lag index. Network topological characteristics were then calculated. Results: The results revealed that table tennis athletes exhibited significantly higher average power spectral density in the α band compared to the control group. Moreover, athletes not only demonstrated stronger functional connections, but they also exhibited enhanced transmission efficiency in the brain network, particularly at the local level. Additionally, a lateralization effect was observed, with more potent interconnected hubs identified in the left hemisphere of the athletes’ brain. Conclusions: Our findings imply that the α band may be uniquely associated with table tennis athletes and their motor skills. The brain network characteristics of athletes during the resting state are worth further attention to gain a better understanding of adaptability of and changes in their brains during training and competition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
luonayi完成签到,获得积分10
3秒前
Jozee完成签到,获得积分10
4秒前
夏伊发布了新的文献求助10
4秒前
ding应助Caesar采纳,获得10
5秒前
ll发布了新的文献求助30
6秒前
6秒前
CipherSage应助布丁采纳,获得10
6秒前
eleusis完成签到 ,获得积分10
6秒前
喜羊羊完成签到,获得积分10
6秒前
安静凡旋发布了新的文献求助10
8秒前
Jozee发布了新的文献求助10
9秒前
11秒前
大模型应助遗梦梦采纳,获得10
15秒前
爱的纠缠发布了新的文献求助20
18秒前
19秒前
19秒前
sjxbjrndkd完成签到 ,获得积分10
20秒前
franca2005完成签到,获得积分10
20秒前
youjiwuji发布了新的文献求助10
22秒前
科研通AI5应助寻风采纳,获得10
25秒前
26秒前
27秒前
XXH完成签到 ,获得积分10
27秒前
ding应助franca2005采纳,获得10
28秒前
31秒前
银河发布了新的文献求助10
31秒前
充电宝应助huanhuan采纳,获得10
31秒前
鳗鱼涵梅发布了新的文献求助10
32秒前
32秒前
Lucas应助聪明含桃采纳,获得10
33秒前
jjj发布了新的文献求助10
35秒前
yun完成签到,获得积分10
37秒前
完美世界发布了新的文献求助10
37秒前
李健的粉丝团团长应助ymy采纳,获得10
37秒前
zhangdanadn应助科研通管家采纳,获得10
37秒前
无花果应助科研通管家采纳,获得10
37秒前
CodeCraft应助科研通管家采纳,获得10
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800230
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325664
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547