Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array

压阻效应 触觉传感器 人工智能 计算机科学 可视化 压力传感器 信号(编程语言) 传感器阵列 图层(电子) 计算机视觉 材料科学 机器人 工程类 纳米技术 机械工程 机器学习 光电子学 程序设计语言
作者
Qiangqiang Ouyang,Chuanjie Yao,Houhua Chen,Liping Song,Tao Zhang,Dapeng Chen,Lidong Yang,Mojun Chen,Hui‐Jiuan Chen,Zhenwei Peng,Xi Xie
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:246: 115873-115873 被引量:12
标识
DOI:10.1016/j.bios.2023.115873
摘要

Flexible pressure sensor arrays have been playing important roles in various applications of human–machine interface, including robotic tactile sensing, electronic skin, prosthetics, and human–machine interaction. However, it remains challenging to simultaneously achieve high spatial and temporal resolution in developing pressure sensor arrays for tactile sensing with robust function to achieve precise signal recognition. This work presents the development of a flexible high spatiotemporal piezoresistive sensor array (PRSA) by coupling with machine learning algorithms to enhance tactile recognition. The sensor employs cross-striped nanocarbon-polymer composite as an active layer, though screen printing manufacture processes. A miniaturized signal readout circuit and transmission board is developed to achieve high-speed acquisition of distributed pressure signals from the PRSA. Test results indicate that the developed PRSA platform simultaneously possesses the characteristics of high spatial resolution up to 1.5 mm, fast temporal resolution of about 5 ms, and long-term durability with a variation of less than 2%. The PRSA platform also exhibits excellent performance in real-time visualization of multi-point touch, mapping embossed shapes, and tracking motion trajectory. To test the performance of PRSA in recognizing different shapes, we acquired pressure images by pressing the finger-type device coated with PRSA film on different embossed shapes and implementing the T-distributed Stochastic Neighbor Embedding model to visualize the distinction between images of different shapes. Then we adopted a one-layer neural network to quantify the discernibility between images of different shapes. The analysis results show that the PRSA could capture the embossed shapes clearly by one contact with high discernibility up to 98.9%. Collectively, the PRSA as a promising platform demonstrates its promising potential for robotic tactile sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenzy1987完成签到,获得积分10
1秒前
1秒前
5秒前
NeuroYan发布了新的文献求助10
6秒前
Asteria完成签到,获得积分10
8秒前
清欢发布了新的文献求助10
10秒前
10秒前
11秒前
Yu完成签到,获得积分10
11秒前
郜雨南完成签到,获得积分20
11秒前
想要飞完成签到,获得积分10
12秒前
科研通AI5应助chenzy1987采纳,获得10
14秒前
郜雨南发布了新的文献求助10
16秒前
16秒前
钱念波发布了新的文献求助10
16秒前
LincLin发布了新的文献求助10
17秒前
弄香完成签到,获得积分10
18秒前
18秒前
18秒前
漫漫完成签到 ,获得积分10
19秒前
jitanxiang完成签到,获得积分10
19秒前
科研通AI5应助1234采纳,获得10
19秒前
21秒前
21秒前
茶叙汤言完成签到,获得积分10
22秒前
无风海发布了新的文献求助10
22秒前
炙热冰夏发布了新的文献求助10
23秒前
木耳发布了新的文献求助10
23秒前
superming发布了新的文献求助10
26秒前
Jozee发布了新的文献求助10
27秒前
南鸢完成签到 ,获得积分10
27秒前
无风海完成签到,获得积分10
28秒前
29秒前
666发布了新的文献求助10
29秒前
30秒前
33秒前
自由完成签到 ,获得积分10
33秒前
33秒前
34秒前
1234完成签到,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783118
求助须知:如何正确求助?哪些是违规求助? 3328459
关于积分的说明 10236592
捐赠科研通 3043558
什么是DOI,文献DOI怎么找? 1670577
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119