Identification of Potent Small-Molecule PCSK9 Inhibitors Based on Quantitative Structure-Activity Relationship, Pharmacophore Modeling, and Molecular Docking Procedure

PCSK9 数量结构-活动关系 可欣 医学 药效团 前蛋白转化酶 低密度脂蛋白受体 化学 胆固醇 立体化学 脂蛋白 内科学
作者
Ali Mahmoudi,Alexandra E. Butler,Maciej Banach,Tannaz Jamialahmadi,Amirhossein Sahebkar
出处
期刊:Current Problems in Cardiology [Elsevier BV]
卷期号:48 (6): 101660-101660 被引量:6
标识
DOI:10.1016/j.cpcardiol.2023.101660
摘要

The leading cause of atherosclerotic cardiovascular disease (ASCVD) is elevated low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) attaches to the domain of LDL receptor (LDLR), diminishing LDL-C influx and LDLR cell surface presentation in hepatocytes, resulting in higher circulating LDL-C levels. PCSK9 dysfunction has been linked to lower levels of plasma LDLC and a decreased risk of coronary heart disease (CHD). Herein, using virtual screening tools, we aimed to identify a potent small-molecule PCSK9 inhibitor in compounds that are currently being studied in clinical trials. We first performed chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) filtering of 9800 clinical trial compounds obtained from the ZINC 15 database using Lipinski's rule of 5 and achieved 3853 compounds. Two-dimensional (2D) quantitative structure-activity relationship (QSAR) was initiated by computing molecular descriptors and selecting important descriptors of 23 PCSK9 inhibitors. Multivariate calibration was performed with the partial least square regression (PLS) method with 18 compounds for training to design the QSAR model and 5 compounds for the test set to assess the model. The best latent variables (LV) (LV=6) with the lowest value of Root-Mean-Square Error of Cross-Validation (RMSECV) of 0.48 and leave-one-out cross-validation correlation coefficient (R2CV) = 0.83 were obtained for the QSAR model. The low RMSEC (0.21) with high R²cal (0.966) indicates the probability of fit between the experimental data and the calibration model. Using QSAR analysis of 3853 compounds, 2635 had a pIC50<1 and were considered for pharmacophore screening. The PHASE module (a complete package for pharmacophore modeling) designed the pharmacophore hypothesis through multiple ligands. The top 14 compounds (pIC50>1) were defined as active, whereas 9 (pIC50<1) were considered as an inactive set. Three five-point pharmacophore hypotheses achieved the highest score: DHHRR1, DHHRR2, and DHRRR1. The highest and best model with survival scores (5.365) was DHHRR1, comprising 1 hydrogen donor (D), 2 hydrophobic groups (H), and 2 rings of aromatic (R) features. We selected the molecules with a higher 1.5 fitness score (257 compounds) in pharmacophore screening (DHHRR1) for molecular docking screening. Molecular docking indicates that ZINC000051951669, with a binding affinity: of -13.2 kcal/mol and 2 H-bonds, has the highest binding to the PCSK9 protein. ZINC000011726230 with energy binding: -11.4 kcal/mol and 3 H-bonds, ZINC000068248147 with binding affinity: -10.7 kcal/mol and 1 H-bond, ZINC000029134440 with a binding affinity: -10.6 kcal/mol and 4 H-bonds were ranked next, respectively. To conclude, the archived molecules identified as inhibitory PCSK9 candidates, and especially ZINC000051951669 may therefore significantly inhibit PCSK9 and should be considered in the newly designed trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的曼安完成签到 ,获得积分10
3秒前
lod完成签到,获得积分10
10秒前
gxzsdf完成签到 ,获得积分10
11秒前
GQ完成签到,获得积分10
15秒前
FashionBoy应助Lelepok采纳,获得80
16秒前
18秒前
肥仔完成签到 ,获得积分10
23秒前
读行千万发布了新的文献求助10
23秒前
乐观的小松鼠完成签到,获得积分10
28秒前
EzawaTamiko完成签到 ,获得积分10
28秒前
元力完成签到,获得积分10
28秒前
石子完成签到 ,获得积分10
30秒前
chen完成签到 ,获得积分10
30秒前
科研通AI5应助等等采纳,获得10
43秒前
淡淡菠萝完成签到 ,获得积分10
50秒前
白天亮完成签到,获得积分10
53秒前
胖胖完成签到 ,获得积分0
56秒前
58秒前
无一完成签到 ,获得积分0
1分钟前
永毅完成签到 ,获得积分10
1分钟前
星落完成签到,获得积分10
1分钟前
大头完成签到 ,获得积分10
1分钟前
一叶知秋应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
一叶知秋应助科研通管家采纳,获得10
1分钟前
单纯的小土豆完成签到 ,获得积分10
1分钟前
wanjingwan完成签到 ,获得积分10
1分钟前
花里尘发布了新的文献求助10
1分钟前
七子完成签到 ,获得积分10
1分钟前
西安浴日光能赵炜完成签到,获得积分10
1分钟前
bo完成签到 ,获得积分10
1分钟前
研友_nqv5WZ完成签到 ,获得积分10
1分钟前
Wilson完成签到 ,获得积分10
1分钟前
研友_ZG4ml8完成签到 ,获得积分10
1分钟前
fatcat完成签到,获得积分10
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
畅快的苑博完成签到 ,获得积分10
1分钟前
mc完成签到 ,获得积分10
1分钟前
犹豫野狼完成签到 ,获得积分10
1分钟前
lunhui6453完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4344708
求助须知:如何正确求助?哪些是违规求助? 3851490
关于积分的说明 12021700
捐赠科研通 3493036
什么是DOI,文献DOI怎么找? 1916810
邀请新用户注册赠送积分活动 959762
科研通“疑难数据库(出版商)”最低求助积分说明 859840