已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of Potent Small-Molecule PCSK9 Inhibitors Based on Quantitative Structure-Activity Relationship, Pharmacophore Modeling, and Molecular Docking Procedure

PCSK9 数量结构-活动关系 可欣 医学 药效团 前蛋白转化酶 低密度脂蛋白受体 化学 胆固醇 立体化学 脂蛋白 内科学
作者
Ali Mahmoudi,Alexandra E. Butler,Maciej Banach,Tannaz Jamialahmadi,Amirhossein Sahebkar
出处
期刊:Current Problems in Cardiology [Elsevier BV]
卷期号:48 (6): 101660-101660 被引量:7
标识
DOI:10.1016/j.cpcardiol.2023.101660
摘要

The leading cause of atherosclerotic cardiovascular disease (ASCVD) is elevated low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) attaches to the domain of LDL receptor (LDLR), diminishing LDL-C influx and LDLR cell surface presentation in hepatocytes, resulting in higher circulating LDL-C levels. PCSK9 dysfunction has been linked to lower levels of plasma LDLC and a decreased risk of coronary heart disease (CHD). Herein, using virtual screening tools, we aimed to identify a potent small-molecule PCSK9 inhibitor in compounds that are currently being studied in clinical trials. We first performed chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) filtering of 9800 clinical trial compounds obtained from the ZINC 15 database using Lipinski's rule of 5 and achieved 3853 compounds. Two-dimensional (2D) quantitative structure-activity relationship (QSAR) was initiated by computing molecular descriptors and selecting important descriptors of 23 PCSK9 inhibitors. Multivariate calibration was performed with the partial least square regression (PLS) method with 18 compounds for training to design the QSAR model and 5 compounds for the test set to assess the model. The best latent variables (LV) (LV=6) with the lowest value of Root-Mean-Square Error of Cross-Validation (RMSECV) of 0.48 and leave-one-out cross-validation correlation coefficient (R2CV) = 0.83 were obtained for the QSAR model. The low RMSEC (0.21) with high R²cal (0.966) indicates the probability of fit between the experimental data and the calibration model. Using QSAR analysis of 3853 compounds, 2635 had a pIC50<1 and were considered for pharmacophore screening. The PHASE module (a complete package for pharmacophore modeling) designed the pharmacophore hypothesis through multiple ligands. The top 14 compounds (pIC50>1) were defined as active, whereas 9 (pIC50<1) were considered as an inactive set. Three five-point pharmacophore hypotheses achieved the highest score: DHHRR1, DHHRR2, and DHRRR1. The highest and best model with survival scores (5.365) was DHHRR1, comprising 1 hydrogen donor (D), 2 hydrophobic groups (H), and 2 rings of aromatic (R) features. We selected the molecules with a higher 1.5 fitness score (257 compounds) in pharmacophore screening (DHHRR1) for molecular docking screening. Molecular docking indicates that ZINC000051951669, with a binding affinity: of -13.2 kcal/mol and 2 H-bonds, has the highest binding to the PCSK9 protein. ZINC000011726230 with energy binding: -11.4 kcal/mol and 3 H-bonds, ZINC000068248147 with binding affinity: -10.7 kcal/mol and 1 H-bond, ZINC000029134440 with a binding affinity: -10.6 kcal/mol and 4 H-bonds were ranked next, respectively. To conclude, the archived molecules identified as inhibitory PCSK9 candidates, and especially ZINC000051951669 may therefore significantly inhibit PCSK9 and should be considered in the newly designed trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助summerlore采纳,获得30
2秒前
Ava应助jy采纳,获得10
2秒前
科研通AI2S应助方俊驰采纳,获得10
2秒前
叶航发布了新的文献求助10
3秒前
3秒前
高兴的问儿完成签到 ,获得积分10
3秒前
wqw发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
Ava应助濮阳雨旋采纳,获得10
6秒前
天天天王完成签到,获得积分10
7秒前
7秒前
8秒前
独特的兰发布了新的文献求助10
8秒前
sunwx完成签到,获得积分10
9秒前
9秒前
foreverbigbao发布了新的文献求助10
9秒前
Ade完成签到,获得积分10
10秒前
浮游应助豆豆哥采纳,获得10
10秒前
10秒前
10秒前
煜钧完成签到,获得积分10
13秒前
方俊驰发布了新的文献求助10
14秒前
14秒前
aloopp发布了新的文献求助10
15秒前
还减肥呢完成签到 ,获得积分10
16秒前
大模型应助独特的兰采纳,获得10
16秒前
孙雪松完成签到 ,获得积分10
17秒前
方俊驰完成签到,获得积分10
19秒前
曲奇关注了科研通微信公众号
20秒前
20秒前
聪慧的正豪应助风痕采纳,获得10
21秒前
fox完成签到 ,获得积分10
23秒前
23秒前
24秒前
灿华完成签到 ,获得积分10
25秒前
HCLO完成签到,获得积分10
27秒前
执刀手发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899245
求助须知:如何正确求助?哪些是违规求助? 4179637
关于积分的说明 12975373
捐赠科研通 3943651
什么是DOI,文献DOI怎么找? 2163478
邀请新用户注册赠送积分活动 1181737
关于科研通互助平台的介绍 1087447