Artificial Intelligence Model for Alzheimer’s Disease Detection with Convolution Neural Network for Magnetic Resonance Images

深度学习 人工智能 卷积神经网络 神经影像学 计算机科学 疾病 机器学习 卷积(计算机科学) 人工神经网络 召回 磁共振成像 模式识别(心理学) 医学 心理学 神经科学 病理 放射科 认知心理学
作者
Shabana R. Ziyad,Meshal Alharbi,May Altulyan
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:93 (1): 235-245 被引量:3
标识
DOI:10.3233/jad-221250
摘要

Alzheimer's disease (AD) is a neurodegenerative disease that drastically affects brain cells. Early detection of this disease can reduce the brain cell damage rate and improve the prognosis of the patient to a great extent. The patients affected with AD tend to depend on their children and relatives for their daily chores.This research study utilizes the latest technologies of artificial intelligence and computation power to aid the medical industry. The study aims at early detection of AD to enable doctors to treat patients with the appropriate medication in the early stages of the disease condition.In this research study, convolutional neural networks, an advanced deep learning technique, are adopted to classify AD patients with their MRI images. Deep learning models with customized architecture are precise in the early detection of diseases with images retrieved by neuroimaging techniques.The convolution neural network model classifies the patients as diagnosed with AD or cognitively normal. Standard metrics evaluate the model performance to compare with the state-of-the-art methodologies. The experimental study of the proposed model shows promising results with an accuracy of 97%, precision of 94%, recall rate of 94%, and f1-score of 94%.This study leverages powerful technologies like deep learning to aid medical practitioners in diagnosing AD. It is crucial to detect AD early to control and slow down the rate at which the disease progresses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助杜阿拉阿拉采纳,获得10
刚刚
shangx发布了新的文献求助10
刚刚
洁净雁菱完成签到,获得积分10
1秒前
1秒前
Z-先森完成签到,获得积分10
2秒前
66完成签到,获得积分10
2秒前
2秒前
蓝桥兰灯完成签到,获得积分10
3秒前
YQ完成签到,获得积分10
3秒前
4秒前
俊逸十八完成签到 ,获得积分10
5秒前
5秒前
5秒前
肥皂剧完成签到,获得积分10
5秒前
SciGPT应助光亮向雁采纳,获得30
6秒前
6秒前
6秒前
wh完成签到,获得积分10
6秒前
nicolasfugui完成签到,获得积分10
7秒前
7秒前
PJ发布了新的文献求助10
7秒前
xyz发布了新的文献求助10
8秒前
马壮壮发布了新的文献求助10
9秒前
fzx发布了新的文献求助10
9秒前
华国锋完成签到,获得积分10
9秒前
9秒前
Yu完成签到,获得积分10
9秒前
内向的绮南完成签到,获得积分10
10秒前
大个应助邢文瑞采纳,获得10
10秒前
调皮黑猫发布了新的文献求助30
11秒前
粽子发布了新的文献求助30
12秒前
酷酷小凡完成签到,获得积分10
12秒前
小酥饼完成签到,获得积分10
13秒前
WYHX完成签到,获得积分10
13秒前
15秒前
Sandy发布了新的文献求助10
15秒前
小仙女212发布了新的文献求助20
15秒前
human完成签到,获得积分10
15秒前
深情安青应助饭团0814采纳,获得10
15秒前
kangk14发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791873
求助须知:如何正确求助?哪些是违规求助? 3336211
关于积分的说明 10279514
捐赠科研通 3052867
什么是DOI,文献DOI怎么找? 1675394
邀请新用户注册赠送积分活动 803397
科研通“疑难数据库(出版商)”最低求助积分说明 761278