RIDCP: Revitalizing Real Image Dehazing via High-Quality Codebook Priors

代码本 计算机科学 先验概率 管道(软件) 人工智能 修补 匹配(统计) 图像(数学) 计算机视觉 图像质量 贝叶斯概率 统计 数学 程序设计语言
作者
Ruiqi Wu,Zheng-Peng Duan,Chunle Guo,Zhi Chai,Chongyi Li
标识
DOI:10.1109/cvpr52729.2023.02134
摘要

Existing dehazing approaches struggle to process real-world hazy images owing to the lack of paired real data and robust priors. In this work, we present a new paradigm for real image dehazing from the perspectives of synthesizing more realistic hazy data and introducing more robust priors into the network. Specifically, (1) instead of adopting the de facto physical scattering model, we rethink the degradation of real hazy images and propose a phenomenological pipeline considering diverse degradation types. (2) We propose a Real Image Dehazing network via high-quality Codebook Priors (RIDCP). Firstly, a VQGAN is pre-trained on a large-scale high-quality dataset to obtain the discrete codebook, encapsulating high-quality priors (HQPs). After replacing the negative effects brought by haze with HQPs, the decoder equipped with a novel normalized feature alignment module can effectively utilize high-quality features and produce clean results. However, although our degradation pipeline drastically mitigates the domain gap between synthetic and real data, it is still intractable to avoid it, which challenges HQPs matching in the wild. Thus, we recalculate the distance when matching the features to the HQPs by a controllable matching operation, which facilitates finding better counterparts. We provide a recommendation to control the matching based on an explainable solution. Users can also flexibly adjust the enhancement degree as per their preference. Extensive experiments verify the effectiveness of our data synthesis pipeline and the superior performance of RIDCP in real image dehazing. Code and data are released at https://rqwu.github.io/projects/RIDCP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助杨灵培采纳,获得10
刚刚
zz发布了新的文献求助10
刚刚
666完成签到,获得积分10
1秒前
单纯菠萝完成签到,获得积分10
1秒前
1秒前
风信子完成签到,获得积分10
2秒前
倒头就睡完成签到,获得积分10
2秒前
忧心的天菱完成签到,获得积分10
2秒前
2秒前
3秒前
扶南发布了新的文献求助10
4秒前
科研通AI2S应助S.采纳,获得10
5秒前
杨枝甘露樱桃完成签到,获得积分10
5秒前
何何何完成签到 ,获得积分10
6秒前
华仔应助白鸽鸽采纳,获得10
7秒前
liu45kf发布了新的文献求助10
7秒前
Dada完成签到,获得积分10
7秒前
8秒前
完美世界应助马静采纳,获得10
10秒前
12秒前
歪歪完成签到,获得积分10
13秒前
14秒前
14秒前
落叶解三秋完成签到,获得积分10
15秒前
wynne313完成签到 ,获得积分10
16秒前
16秒前
17秒前
平平无奇完成签到 ,获得积分10
17秒前
moon完成签到,获得积分10
17秒前
17秒前
九点半上课了完成签到,获得积分10
17秒前
小汁儿发布了新的文献求助10
18秒前
18秒前
小小柴完成签到,获得积分10
18秒前
bkagyin应助nb小子采纳,获得10
18秒前
长也发布了新的文献求助10
18秒前
NexusExplorer应助星落枝头采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436430
求助须知:如何正确求助?哪些是违规求助? 4548467
关于积分的说明 14214403
捐赠科研通 4468775
什么是DOI,文献DOI怎么找? 2449157
邀请新用户注册赠送积分活动 1440092
关于科研通互助平台的介绍 1416668