灰色关联分析
健康状况
多元统计
电池(电)
锂离子电池
锂(药物)
荷电状态
变量(数学)
国家(计算机科学)
计算机科学
多元分析
数据挖掘
人工智能
统计
机器学习
数学
心理学
算法
功率(物理)
物理
精神科
数学分析
量子力学
作者
Zhicun Xu,Naiming Xie,Haoran Diao
出处
期刊:Energy
[Elsevier BV]
日期:2023-11-01
卷期号:283: 129167-129167
被引量:2
标识
DOI:10.1016/j.energy.2023.129167
摘要
Accurate assessment of the state of health of lithium-ion batteries using relevant factors is crucial for the maintenance of lithium-ion batteries in electric vehicles. Firstly, data features are extracted from University of Maryland public dataset and dataset is pre-processed. Secondly, the extracted features were analysed using a grey relational analysis model to identify the most significant factors affecting the state of health. Thirdly, this paper proposed an adaptive variable fractional order multivariate grey prediction model to accurately estimate the state of health of lithium-ion batteries. The comparative results demonstrate the overall superiority of the proposed model.
科研通智能强力驱动
Strongly Powered by AbleSci AI