生物相容性材料
雨生红球菌
涂层
纤维接头
化学
材料科学
食品科学
生物
生物医学工程
纳米技术
医学
解剖
虾青素
类胡萝卜素
作者
Merve Tokgöz,Çağla Yarkent,Ayşe Köse,Suphi Ş. Öncel
标识
DOI:10.1093/lambio/ovad086
摘要
Sutures are considered as surgical materials that form excellent surfaces to integrate the postoperative parts of the body. These materials present suitable platforms for potential bacterial penetrations. Therefore, coating these biomedical materials with biocompatible compounds is seen as a potential approach to improve their properties while avoiding adverse effects. The aim of this study was to evaluate Arthrospira platensis, Haematacoccus pluvialis, Chlorella minutissima, Botyrococcus braunii, and Nostoc muscorum as potential surgical suture coating materials. Their crude extracts were absorbed into two different sutures as poly glycolic (90%)-co-lactic acid (10%) (PGLA) and poly dioxanone (PDO); then, their cytotoxic effects and antibacterial activities were examined. Both N. muscorum-coated sutures (PGLA and PDO) and A. platensis-coated (PGLA and PDO) sutures did not induce any toxic effect on L929 mouse fibroblast cells (>70% cell viability). The highest antibacterial activity against Staphylococcus aureus was achieved with N. muscorum-coated PGLA and A. platensis-coated PGLA at 11.18 ± 0.54 mm and 9.52 ± 1.15 mm, respectively. These sutures were examined by mechanical analysis, and found suitable according to ISO 10993-5. In comparison with the commercial antibacterial agent (chlorohexidine), the results proved that N. muscorum extract can be considered as the most promising suture coating material for the human applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI