已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Magnetic resonance imaging radiomics-based prediction of clinically significant prostate cancer in equivocal PI-RADS 3 lesions in the transitional zone

医学 逻辑回归 磁共振成像 前列腺癌 队列 单变量 接收机工作特性 置信区间 单变量分析 前列腺 放射科 优势比 列线图 前列腺特异性抗原 核医学 多元分析 癌症 多元统计 肿瘤科 内科学 机器学习 计算机科学
作者
Yingying Zhao,Meilian Xiong,Yuefeng Liu,Lijuan Duan,Jiali Chen,Zhen Xing,Yan-Shun Lin,Tanhui Chen
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:6
标识
DOI:10.3389/fonc.2023.1247682
摘要

Purpose This bi-institutional study aimed to establish a robust model for predicting clinically significant prostate cancer (csPCa) (pathological grade group ≥ 2) in PI-RADS 3 lesions in the transition zone by comparing the performance of combination models. Materials and methods This study included 243 consecutive men who underwent 3-Tesla magnetic resonance imaging (MRI) and ultrasound-guided transrectal biopsy from January 2020 and April 2022 which is divided into a training cohort of 170 patients and a separate testing cohort of 73 patients. T2WI and DWI images were manually segmented for PI-RADS 3 lesions for the mean ADC and radiomic analysis. Predictive clinical factors were identified using both univariate and multivariate logistic models. The least absolute shrinkage and selection operator (LASSO) regression models were deployed for feature selection and for constructing radiomic signatures. We developed nine models utilizing clinical factors, radiological features, and radiomics, leveraging logistic and XGboost methods. The performances of these models was subsequently compared using Receiver Operating Characteristic (ROC) analysis and the Delong test. Results Out of the 243 participants with a median age of 70 years, 30 were diagnosed with csPCa, leaving 213 without a csPCa diagnosis. Prostate-specific antigen density (PSAD) stood out as the only significant clinical factor (odds ratio [OR], 1.068; 95% confidence interval [CI], 1.029–1.115), discovered through the univariate and multivariate logistic models. Seven radiomic features correlated with csPCa prediction. Notably, the XGboost model outperformed eight other models (AUC of the training cohort: 0.949, and validation cohort: 0.913). However, it did not surpass the PSAD+MADC model (P > 0.05) in the training and testing cohorts (AUC, 0.949 vs. 0.888 and 0.913 vs. 0.854, respectively). Conclusion The machine learning XGboost model presented the best performance in predicting csPCa in PI-RADS 3 lesions within the transitional zone. However, the addition of radiomic classifiers did not display any significant enhancement over the compound model of clinical and radiological findings. The most exemplary and generalized option for quantitative prostate evaluation was Mean ADC+PSAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
dada发布了新的文献求助10
5秒前
哦豁发布了新的文献求助10
5秒前
5秒前
尼i发布了新的文献求助10
7秒前
爆米花应助Mindy采纳,获得10
10秒前
CipherSage应助皮二牛牛采纳,获得10
10秒前
赘婿应助尼i采纳,获得10
13秒前
一丁雨完成签到,获得积分10
22秒前
放青松完成签到,获得积分10
24秒前
卡皮巴拉完成签到 ,获得积分10
25秒前
tmxx发布了新的文献求助20
25秒前
26秒前
26秒前
changhe发布了新的文献求助50
27秒前
量子星尘发布了新的文献求助10
30秒前
33秒前
情怀应助辰昜采纳,获得10
35秒前
天天快乐应助君与同行采纳,获得10
36秒前
Erick发布了新的文献求助10
38秒前
天天快乐应助科研通管家采纳,获得10
41秒前
姜莹应助科研通管家采纳,获得10
41秒前
41秒前
41秒前
Owen应助科研通管家采纳,获得30
42秒前
42秒前
搜集达人应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
42秒前
42秒前
42秒前
42秒前
dd关闭了dd文献求助
43秒前
Roman发布了新的文献求助10
44秒前
45秒前
123发布了新的文献求助10
46秒前
调皮的寒云完成签到 ,获得积分10
47秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
基于优化FAC程序的W9+大规模能级计算和基于上海高温超导EBIT装置的W16+可见光光谱研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4036366
求助须知:如何正确求助?哪些是违规求助? 3574430
关于积分的说明 11372648
捐赠科研通 3304780
什么是DOI,文献DOI怎么找? 1818988
邀请新用户注册赠送积分活动 892545
科研通“疑难数据库(出版商)”最低求助积分说明 814945