KbhbXG: A Machine learning architecture based on XGBoost for prediction of lysine β-Hydroxybutyrylation (Kbhb) modification sites

翻译后修饰 鉴定(生物学) 计算机科学 透明度(行为) 人工智能 过程(计算) 机器学习 生物 生物化学 化学 计算机安全 植物 操作系统
作者
Leqi Chen,Liwen Liu,Haiyan Su,Yan Xu
出处
期刊:Methods [Elsevier BV]
卷期号:227: 27-34 被引量:2
标识
DOI:10.1016/j.ymeth.2024.04.016
摘要

Lysine β-hydroxybutyrylation is an important post-translational modification (PTM) involved in various physiological and biological processes. In this research, we introduce a novel predictor KbhbXG, which utilizes XGBoost to identify β-hydroxybutyrylation modification sites based on protein sequence information. The traditional experimental methods employed for the identification of β-hydroxybutyrylated sites using proteomic techniques are both costly and time-consuming. Thus, the development of computational methods and predictors can play a crucial role in facilitating the rapid identification of β-hydroxybutyrylation sites. Our proposed KbhbXG model first utilizes machine learning algorithm XGBoost to predict β-hydroxybutyrylation modification sites. On the independent test set, KbhbXG achieves an accuracy of 0.7457, specificity of 0.7771, and an impressive area under the curve (AUC) score of 0.8172. The high AUC score achieved by our method demonstrates its potential for effectively identifying novel β-hydroxybutyrylation sites, thereby facilitating further research and exploration of the β-hydroxybutyrylation process. Also, functional analyses have revealed that different organisms preferentially engage in distinct biological processes and pathways, which can provide valuable insights for understanding the mechanism of β-hydroxybutyrylation and guide experimental verification. To promote transparency and reproducibility, we have made both the codes and dataset of KbhbXG publicly available. Researchers interested in utilizing our proposed model can access these resources at https://github.com/Lab-Xu/KbhbXG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
XIA发布了新的文献求助10
5秒前
7秒前
11秒前
Xu完成签到 ,获得积分10
13秒前
14秒前
15秒前
111完成签到 ,获得积分10
16秒前
刘搞笑发布了新的文献求助10
18秒前
19秒前
林溪完成签到,获得积分10
21秒前
LJM完成签到,获得积分10
23秒前
高圆圆完成签到,获得积分10
23秒前
HEIKU应助纪鹏飞采纳,获得10
29秒前
Xu关注了科研通微信公众号
31秒前
32秒前
东邪西毒加任我行完成签到,获得积分10
34秒前
bc应助rrrrroxie采纳,获得40
35秒前
Sunshine完成签到,获得积分10
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
CipherSage应助刘搞笑采纳,获得10
37秒前
38秒前
Aries完成签到 ,获得积分10
42秒前
犹豫紫丝发布了新的文献求助10
47秒前
47秒前
48秒前
48秒前
tier3完成签到,获得积分10
49秒前
49秒前
我以為忘了想念完成签到 ,获得积分10
50秒前
helly完成签到,获得积分10
51秒前
51秒前
52秒前
ariaooo完成签到,获得积分10
53秒前
53秒前
54秒前
liu发布了新的文献求助10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415