Changes in Gene Network Interactions in Breast Cancer Onset and Development

乳腺癌 基因 生物 遗传学 计算生物学 癌症 肿瘤科 癌症研究 医学
作者
Zainab Arshad,Stephen N. Housley,Kara Keun Lee,John F. McDonald
出处
期刊:GEN biotechnology [Mary Ann Liebert]
卷期号:3 (2): 87-96
标识
DOI:10.1089/genbio.2024.0002
摘要

While cancer is generally recognized as a polygenic disease, specific "driver genes" have been identified as promising candidates for targeted gene therapy. While this precision approach has, in many cases, dramatically improved patient treatments/outcomes, much remains to be learned about the molecular basis of cancer. Recent evidence indicates that changes underlying cancer onset/progression are not only attributable to changes in DNA structure/expression of individual genes but to changes in interactions among genes as well. Gene co-expression network analysis can provide novel insight into gene–gene interactions associated with important biological processes involved in cancer that go undetected in standard genetic analyses and may help identify promising new targets for cancer therapy. RNA-seq count data of breast cancer subtypes (Luminal A, Luminal B, and Basil-like) and healthy breast tissues were employed in our analysis. The Basal-like subtype displayed the most highly connected network structure but was the most dissimilar of the three subtypes relative to normal controls. Many network modules were completely lost in the Basal-like subtype, while being preserved in both the Luminal A and Luminal B networks. Forty modules were unique to the Basel-like subtype. Survival analysis of Basal-like modules uncovered 19 genes enriched for functions previously identified as "Hallmarks of Cancer." Unexpectedly, several neural pathways not previously associated with breast cancer were identified as being unique to the Basal-like subtype. Our findings demonstrate the utility of network analysis in the identification of potential new candidates for breast cancer diagnostics and targeted gene therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
Xu完成签到 ,获得积分10
6秒前
7秒前
8秒前
111完成签到 ,获得积分10
9秒前
刘搞笑发布了新的文献求助10
11秒前
12秒前
林溪完成签到,获得积分10
14秒前
LJM完成签到,获得积分10
16秒前
高圆圆完成签到,获得积分10
16秒前
HEIKU应助纪鹏飞采纳,获得10
22秒前
Xu关注了科研通微信公众号
24秒前
25秒前
东邪西毒加任我行完成签到,获得积分10
27秒前
bc应助rrrrroxie采纳,获得40
28秒前
Sunshine完成签到,获得积分10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
CipherSage应助刘搞笑采纳,获得10
30秒前
31秒前
Aries完成签到 ,获得积分10
35秒前
犹豫紫丝发布了新的文献求助10
40秒前
40秒前
41秒前
41秒前
tier3完成签到,获得积分10
42秒前
42秒前
我以為忘了想念完成签到 ,获得积分10
43秒前
helly完成签到,获得积分10
44秒前
44秒前
45秒前
ariaooo完成签到,获得积分10
46秒前
46秒前
47秒前
liu发布了新的文献求助10
48秒前
科研通AI2S应助默默忆山采纳,获得10
51秒前
sure发布了新的文献求助10
51秒前
Orange应助liu采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415