可扩展性
计算机科学
工作流程
鉴定(生物学)
推论
启发式
计算生物学
药物发现
表型
概化理论
机器学习
人工智能
生物信息学
生物
基因
遗传学
统计
植物
数学
数据库
作者
Benjamin DeMeo,Charlotte Nesbitt,Samuel A. Miller,Daniel B. Burkhardt,Inna Lipchina,Doris Fu,Peter Holderreith,David Kim,Sergey Kolchenko,Artur Szałata,Ishan Gupta,Christine Kerr,T. Joshua Pfefer,Raziel Rojas-Rodriguez,Sunil Kuppassani,Laurens Kruidenier,Parul B. Doshi,Mahdi Zamanighomi,James J. Collins,Alex K. Shalek
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2025-10-23
卷期号:: eadi8577-eadi8577
被引量:2
标识
DOI:10.1126/science.adi8577
摘要
Phenotypic drug screening remains constrained by the vastness of chemical space and technical challenges scaling experimental workflows. To overcome these barriers, computational methods have been developed to prioritize compounds, but they rely on either single-task models lacking generalizability or heuristic-based genomic proxies that resist optimization. We designed an active deep-learning framework that leverages omics to enable scalable, optimizable identification of compounds that induce complex phenotypes. Our generalizable algorithm outperformed state-of-the-art models on classical recall, translating to a 13-17x increase in phenotypic hit-rate across two hematological discovery campaigns. Combining this algorithm with a lab-in-the-loop signature refinement step, we achieved an additional two-fold increase in hit-rate and molecular insights. In sum, our framework enables efficient phenotypic hit identification campaigns, with broad potential to accelerate drug discovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI