Deep Learning–Based Recurrent Delirium Prediction in Critically Ill Patients

谵妄 医学 病危 危重病 重症监护医学
作者
Filipe R. Lucini,Henry T. Stelfox,Joon Lee
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:51 (4): 492-502 被引量:6
标识
DOI:10.1097/ccm.0000000000005789
摘要

OBJECTIVES: To predict impending delirium in ICU patients using recurrent deep learning. DESIGN: Retrospective cohort study. SETTING: Fifteen medical-surgical ICUs across Alberta, Canada, between January 1, 2014, and January 24, 2020. PATIENTS: Forty-three thousand five hundred ten ICU admissions from 38,426 patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We used ICU and administrative health data to train deep learning models to predict delirium episodes in the next two 12-hour periods (0–12 and 12–24 hr), starting at 24 hours after ICU admission, and to generate new predictions every 12 hours. We used a comprehensive set of 3,643 features, capturing patient history, early ICU admission information (first 24 hr), and the temporal dynamics of various clinical variables throughout the ICU admission. Our deep learning architecture consisted of a feature embedding, a recurrent, and a prediction module. Our best model based on gated recurrent units yielded a sensitivity of 0.810, a specificity of 0.848, a precision (positive predictive value) of 0.704, and an area under the receiver operating characteristic curve (AUROC) of 0.909 in the hold-out test set for the 0–12-hour prediction horizon. For the 12–24-hour prediction horizon, the same model achieved a sensitivity of 0.791, a specificity of 0.807, a precision of 0.637, and an AUROC of 0.895 in the test set. CONCLUSIONS: Our delirium prediction model achieved strong performance by applying deep learning to a dataset that is at least one order of magnitude larger than those used in previous studies. Another novel aspect of our study is the temporal nature of our features and predictions. Our model enables accurate prediction of impending delirium in the ICU, which can potentially lead to early intervention, more efficient allocation of ICU resources, and improved patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助活力的尔蓉采纳,获得30
1秒前
非哲完成签到 ,获得积分10
1秒前
脆脆鲨鱼完成签到,获得积分10
2秒前
隐形的谷南完成签到,获得积分10
2秒前
你好完成签到 ,获得积分0
2秒前
Giao发布了新的文献求助10
4秒前
丘比特应助科研通管家采纳,获得10
6秒前
月亮完成签到 ,获得积分10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
舒心的寻琴完成签到,获得积分10
10秒前
Shaangueuropa完成签到,获得积分10
10秒前
科研通AI5应助活力的尔蓉采纳,获得10
11秒前
闵卷完成签到,获得积分10
11秒前
11秒前
怕孤独的修杰完成签到 ,获得积分10
15秒前
15秒前
席老四发布了新的文献求助10
16秒前
平淡妙松发布了新的文献求助10
17秒前
陶喆完成签到,获得积分10
21秒前
22秒前
科研通AI5应助活力的尔蓉采纳,获得10
22秒前
Robin完成签到,获得积分10
23秒前
席老四完成签到,获得积分10
23秒前
liangx完成签到 ,获得积分10
24秒前
shufessm完成签到,获得积分0
25秒前
28秒前
香蕉觅云应助yjy采纳,获得10
29秒前
微塵完成签到,获得积分10
29秒前
科研通AI5应助迷人依白采纳,获得10
30秒前
ss应助zdd789987采纳,获得10
31秒前
包容的跳跳糖完成签到 ,获得积分10
32秒前
迷路的夏之完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324277
关于积分的说明 10217710
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798531
科研通“疑难数据库(出版商)”最低求助积分说明 758401