亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Point Cloud–Based Concrete Surface Defect Semantic Segmentation

点云 分割 桥(图论) 计算机科学 激光雷达 集合(抽象数据类型) 云计算 数据集 测距 点(几何) 人工智能 计算机视觉 数据挖掘 结构工程 遥感 工程类 地质学 几何学 数学 医学 电信 内科学 程序设计语言 操作系统
作者
Neshat Bolourian,Majid Nasrollahi,Fardin Bahreini,Amin Hammad
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (2) 被引量:22
标识
DOI:10.1061/jccee5.cpeng-5009
摘要

Visual inspection is one of the main approaches for annual bridge inspection. Light detection and ranging (LiDAR) scanning is a new technology, which is beneficial because it collects the point clouds and the third dimension of the scanned objects. Deep learning (DL)-based methods have attracted researchers' attention for concrete surface defect detection. However, no point cloud–based DL method currently is available for semantic segmentation of bridge surface defects without converting the data set into other representations, which results in increasing the size of the data set. Moreover, most of the current point cloud–based concrete surface defect detection methods focus on only one type of defect. On the other hand, a data set plays a key role in DL. Therefore, the lack of publicly available point cloud data sets for bridge surface defects is one of the reasons for the lack of studies in this area. To address these issues, this paper created a publicly available point cloud data set for concrete bridge surface defect detection, and developed a point cloud–based semantic segmentation DL method to detect different types of concrete surface defects. Surface Normal Enhanced PointNet++ (SNEPointNet++) was developed for semantic segmentation of concrete bridge surface defects (i.e., cracks and spalls). SNEPointNet++ focuses on two main characteristics related to surface defects (i.e., normal vector and depth) and considers the issues related to the data set (i.e., imbalanced data set). The data set, which was collected from four concrete bridges and classified into three classes (cracks, spalls, and no defect), is made available for other researchers. The model was trained and evaluated using 60% and 20% of the data set, respectively. Testing on the remaining part of the data set resulted in 93% and 92% recall for cracks and spalls, respectively. Spalls of the segments deeper than 7 cm (severe spalls) can be detected with 99% recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助也曦采纳,获得10
14秒前
24秒前
也曦完成签到,获得积分10
42秒前
冬菊完成签到 ,获得积分10
1分钟前
科研通AI5应助7NEFZ采纳,获得10
1分钟前
是木易呀完成签到,获得积分10
1分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
7NEFZ发布了新的文献求助10
3分钟前
迅速的蜡烛完成签到 ,获得积分10
3分钟前
7NEFZ完成签到,获得积分20
3分钟前
ppppppp_76完成签到 ,获得积分10
3分钟前
豌豆发布了新的文献求助10
4分钟前
4分钟前
山橘月发布了新的文献求助10
4分钟前
漠mo完成签到 ,获得积分10
5分钟前
可爱的函函应助万晓博采纳,获得30
5分钟前
科研通AI5应助7NEFZ采纳,获得10
5分钟前
5分钟前
7NEFZ发布了新的文献求助10
5分钟前
万能图书馆应助wang采纳,获得30
5分钟前
6分钟前
133发布了新的文献求助10
6分钟前
dormraider完成签到,获得积分10
6分钟前
wang完成签到,获得积分10
6分钟前
澄碧千顷完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
wang发布了新的文献求助30
7分钟前
chenwuhao完成签到 ,获得积分10
7分钟前
函数完成签到 ,获得积分10
7分钟前
8分钟前
MizuAsagi发布了新的文献求助50
8分钟前
重要问芙brk完成签到,获得积分10
8分钟前
9分钟前
zzzwhy发布了新的文献求助10
9分钟前
Ava应助11采纳,获得10
9分钟前
汉堡包应助11采纳,获得10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244188
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508