亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction and evaluation of surface roughness with hybrid kernel extreme learning machine and monitored tool wear

表面粗糙度 刀具磨损 支持向量机 机器学习 人工智能 克里金 人工神经网络 机械加工 材料科学 表面光洁度 计算机科学 机床 高斯函数 核(代数) 算法 高斯分布 数学 复合材料 冶金 组合数学 物理 量子力学
作者
Minghui Cheng,Li Jiao,Pei Yan,Siyu Li,Zhicheng Dai,Tianyang Qiu,Xibin Wang
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:84: 1541-1556 被引量:42
标识
DOI:10.1016/j.jmapro.2022.10.072
摘要

In the modern manufacturing industry, surface roughness is a critical parameter to characterize surface quality. The accurate prediction of surface roughness is of great significance for data-driven intelligent manufacturing. However, it's hard to accurately predict surface roughness in the complex machining process, because of the existence of some uncontrollable factors, such as tool wear. To address the aforementioned issue, a novel hybrid kernel extreme learning machine with Gaussian and arc-cosine kernel function (RBF_Arc_HKELM) was proposed to predict surface roughness. Then an optimized whale optimization algorithm was introduced to improve the prediction accuracy. Considering that tool wear is an indirect quantity and changes dynamically with the cutting process, a novel tool wear monitoring framework with attention mechanism, weighted feature averaging, and deep learning models was proposed. Afterward, the basic cutting parameters combined with the monitored tool wear were fed into the trained RBF_Arc_HKELM model for surface roughness estimation. Finally, surface roughness was evaluated by the established RBF_Arc_HKELM model. To verify the validity and performance of the established models, milling experiments were conducted under different cutting parameter combinations and tool wear levels, and some other intelligent algorithms were also used for surface roughness prediction and tool wear monitoring. Compared with kernel extreme learning machine with RBF (RBF_KELM), support vector regression (SVR), Gaussian process regression (GPR), and light gradient boosting machine (LightGBM), in terms of mean absolute error (MAE), the prediction accuracy of RBF_Arc_HKELM is improved by 17.82 %, 15.36 %, 14.16 %, and 6.26 %, respectively. These results indicated that the proposed model has great leverage in validity and accuracy. Moreover, compared with the measured tool wear as the input, the satisfactory prediction results of surface roughness were also obtained with the monitored tool wear as the input of the RBF_Arc_HKELM model with a drop in prediction accuracy of only 8.66 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
37秒前
1分钟前
Sym发布了新的文献求助10
1分钟前
立行完成签到 ,获得积分10
1分钟前
安静书雁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
古铜完成签到 ,获得积分10
3分钟前
契咯完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
苏楠完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
老迟到的友桃完成签到 ,获得积分10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
tingalan应助科研通管家采纳,获得10
6分钟前
bookgg完成签到 ,获得积分10
6分钟前
6分钟前
ZgnomeshghT发布了新的文献求助10
6分钟前
善学以致用应助ZgnomeshghT采纳,获得10
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
孤独剑完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889480
求助须知:如何正确求助?哪些是违规求助? 4173477
关于积分的说明 12952093
捐赠科研通 3934926
什么是DOI,文献DOI怎么找? 2159102
邀请新用户注册赠送积分活动 1177454
关于科研通互助平台的介绍 1082281