已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018

全国健康与营养检查调查 冠心病 尿 环境卫生 环境化学 化学 医学 内科学 无机化学 人口 有机化学
作者
Xi Li,Yang Zhao,Dongdong Zhang,Lei Kuang,Hao Huang,Weiling Chen,Xueru Fu,Yuying Wu,Tian-Ze Li,Jinli Zhang,Lijun Yuan,Huifang Hu,Yu Liu,Ming Zhang,Fulan Hu,Xizhuo Sun,Dongsheng Hu
出处
期刊:Chemosphere [Elsevier BV]
卷期号:311: 137039-137039 被引量:69
标识
DOI:10.1016/j.chemosphere.2022.137039
摘要

Limited information is available on the links between heavy metals' exposure and coronary heart disease (CHD). We aim to establish an efficient and explainable machine learning (ML) model that associates heavy metals' exposure with CHD identification. Our datasets for investigating the associations between heavy metals and CHD were sourced from the US National Health and Nutrition Examination Survey (US NHANES, 2003-2018). Five ML models were established to identify CHD by heavy metals' exposure. Further, 11 discrimination characteristics were used to test the strength of the models. The optimally performing model was selected for identification. Finally, the SHapley Additive exPlanations (SHAP) tool was used for interpreting the features to visualize the selected model's decision-making capacity. In total, 12,554 participants were eligible for this study. The best performing random forest classifier (RF) based on 13 heavy metals to identify CHD was chosen (AUC: 0.827; 95%CI: 0.777-0.877; accuracy: 95.9%). SHAP values indicated that cesium (1.62), thallium (1.17), antimony (1.63), dimethylarsonic acid (0.91), barium (0.76), arsenous acid (0.79), total arsenic (0.01) in urine, and lead (3.58) and cadmium (4.66) in blood positively contributed to the model, while cobalt (-0.15), cadmium (-2.93), and uranium (-0.13) in urine negatively contributed to the model. The RF model was efficient, accurate, and robust in identifying an association between heavy metals' exposure and CHD among US NHANES 2003-2018 participants. Cesium, thallium, antimony, dimethylarsonic acid, barium, arsenous acid, and total arsenic in urine, and lead and cadmium in blood show positive relationships with CHD, while cobalt, cadmium, and uranium in urine show negative relationships with CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情博超完成签到,获得积分10
3秒前
想不出来完成签到 ,获得积分10
3秒前
阿烨完成签到,获得积分10
7秒前
Iris完成签到 ,获得积分10
7秒前
9秒前
17秒前
17秒前
18秒前
wizardz发布了新的文献求助10
24秒前
杰森发布了新的文献求助10
24秒前
瑶啊瑶完成签到,获得积分10
28秒前
xdd完成签到 ,获得积分10
28秒前
33秒前
宋芽芽完成签到,获得积分10
36秒前
38秒前
小树苗完成签到,获得积分10
38秒前
39秒前
changyongcheng完成签到 ,获得积分10
42秒前
wizardz完成签到,获得积分10
43秒前
44秒前
沐雨微寒完成签到,获得积分10
45秒前
科研狗完成签到 ,获得积分10
48秒前
chenting完成签到 ,获得积分10
49秒前
overThat完成签到,获得积分10
59秒前
1分钟前
Billy应助FIN采纳,获得60
1分钟前
领导范儿应助ydj采纳,获得30
1分钟前
Billy举报ggg求助涉嫌违规
1分钟前
1分钟前
欣慰宛菡发布了新的文献求助10
1分钟前
1分钟前
未夕晴完成签到,获得积分10
1分钟前
1分钟前
顺利山柏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
kid1912完成签到,获得积分0
1分钟前
研友_VZG7GZ应助狂野傲南采纳,获得10
1分钟前
sjyu1985完成签到 ,获得积分10
1分钟前
酷波er应助sy采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930950
求助须知:如何正确求助?哪些是违规求助? 3475878
关于积分的说明 10988614
捐赠科研通 3206139
什么是DOI,文献DOI怎么找? 1771777
邀请新用户注册赠送积分活动 859253
科研通“疑难数据库(出版商)”最低求助积分说明 797015