Inner Cascaded U2-Net: An Improvement to Plain Cascaded U-Net

分割 网(多面体) 计算机科学 人工智能 特征(语言学) 块(置换群论) 模式识别(心理学) 残余物 算法 数学 几何学 语言学 哲学
作者
Wenbin Wu,Guanjun Liu,Kaiyi Liang,Hui Zhou
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:134 (2): 1323-1335 被引量:2
标识
DOI:10.32604/cmes.2022.020428
摘要

Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction. U-Net has been the baseline model since the very beginning due to a symmetrical U-structure for better feature extraction and fusing and suitable for small datasets. To enhance the segmentation performance of U-Net, cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine. However, the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the latter one. In this article, we devise novel Inner Cascaded U-Net and Inner Cascaded U2-Net as improvements to plain cascaded U-Net for medical image segmentation. The proposed Inner Cascaded U-Net adds inner nested connections between two U-Nets to share more contextual information. To further boost segmentation performance, we propose Inner Cascaded U2-Net, which applies residual U-block to capture more global contextual information from different scales. The proposed models can be trained from scratch in an end-to-end fashion and have been evaluated on Multimodal Brain Tumor Segmentation Challenge (BraTS) 2013 and ISBI Liver Tumor Segmentation Challenge (LiTS) dataset in comparison to related U-Net, cascaded U-Net, U-Net++, U2-Net and state-of-the-art methods. Our experiments demonstrate that our proposed Inner Cascaded U-Net and Inner Cascaded U2-Net achieve better segmentation performance in terms of dice similarity coefficient and hausdorff distance as well as get finer outline segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Y59785应助方方方2015采纳,获得10
1秒前
谨慎天空完成签到 ,获得积分10
3秒前
忐忑的黑猫应助Hermit采纳,获得10
4秒前
5秒前
研友_n0gOKL发布了新的文献求助10
6秒前
斑马兽完成签到,获得积分10
6秒前
电催化托应助飞鱼采纳,获得10
6秒前
海豚有海发布了新的文献求助10
7秒前
科研通AI5应助Nn采纳,获得10
7秒前
7秒前
huzi发布了新的文献求助20
8秒前
9秒前
11秒前
xxyhh给xxyhh的求助进行了留言
11秒前
12秒前
12秒前
12秒前
13秒前
ZHOU完成签到,获得积分10
13秒前
独特乘云完成签到,获得积分10
14秒前
青青闭上眼睛应助kk采纳,获得10
14秒前
14秒前
Anqiang发布了新的文献求助10
15秒前
凛冬完成签到,获得积分10
16秒前
怕黑寻双发布了新的文献求助10
17秒前
Sonezeroone完成签到,获得积分10
17秒前
lys发布了新的文献求助10
18秒前
凛冬发布了新的文献求助10
20秒前
UUU完成签到 ,获得积分10
20秒前
科研民工发布了新的文献求助10
20秒前
fmx完成签到,获得积分10
20秒前
不安的硬币完成签到,获得积分10
20秒前
Eternity完成签到,获得积分10
23秒前
打打应助怕黑寻双采纳,获得10
23秒前
SUNun关注了科研通微信公众号
23秒前
田様应助顺心凡采纳,获得10
25秒前
he完成签到 ,获得积分10
27秒前
Anqiang完成签到,获得积分10
30秒前
30秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781649
求助须知:如何正确求助?哪些是违规求助? 3327217
关于积分的说明 10230067
捐赠科研通 3042074
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774