FusionINV: A Diffusion-Based Approach for Multimodal Image Fusion

图像融合 计算机科学 人工智能 计算机视觉 图像处理 融合 图像(数学) 模式识别(心理学) 语言学 哲学
作者
Pengwei Liang,Junjun Jiang,Qing Ma,Chenyang Wang,Xianming Liu,Jiayi Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3593775
摘要

Infrared images exhibit a significantly different appearance compared to visible counterparts. Existing infrared and visible image fusion (IVF) methods fuse features from both infrared and visible images, producing a new "image" appearance not inherently captured by any existing device. From an appearance perspective, infrared, visible, and fused images belong to different data domains. This difference makes it challenging to apply fused images because their domain-specific appearance may be difficult for downstream systems, e.g., pre-trained segmentation models. Therefore, accurately assessing the quality of the fused image is challenging. To address those problem, we propose a novel IVF method, FusionINV, which produces fused images with an appearance similar to visible images. FusionINV employs the pre-trained Stable Diffusion (SD) model to invert infrared images into the noise feature space. To inject visible-style appearance information into the infrared features, we leverage the inverted features from visible images to guide this inversion process. In this way, we can embed all the information of infrared and visible images in the noise feature space, and then use the prior of the pre-trained SD model to generate visually friendly images that align more closely with the RGB distribution. Specially, to generate the fused image, we design a tailored fusion rule within the denoising process that iteratively fuses visible-style infrared and visible features. In this way, the fused image falls into the visible domain and can be directly applied to existing downstream machine systems. Thanks to advancements in image inversion, FusionINV can directly produce fused images in a training-free manner. Extensive experiments demonstrate that FusionINV achieves outstanding performance in both human visual evaluation and machine perception tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘彪发布了新的文献求助30
刚刚
晏温发布了新的文献求助10
刚刚
LJX发布了新的文献求助10
刚刚
陶玲发布了新的文献求助30
刚刚
情怀应助唠叨的唠叨虫采纳,获得10
刚刚
zhonglv7应助呼啦啦采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
漂亮萝莉发布了新的文献求助10
2秒前
李生发布了新的文献求助10
2秒前
安详盼波完成签到,获得积分10
2秒前
2秒前
CR7应助科研通管家采纳,获得20
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
伶俐璎完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得30
3秒前
bkagyin应助科研通管家采纳,获得20
3秒前
大模型应助kkkk采纳,获得10
4秒前
6秒前
田様应助开心的火龙果采纳,获得10
7秒前
7秒前
勇敢牛牛完成签到,获得积分10
7秒前
955完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
香蕉完成签到,获得积分10
9秒前
10秒前
trussie发布了新的文献求助10
10秒前
fhbsdufh发布了新的文献求助10
10秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4181023
求助须知:如何正确求助?哪些是违规求助? 3716724
关于积分的说明 11716705
捐赠科研通 3397015
什么是DOI,文献DOI怎么找? 1863852
邀请新用户注册赠送积分活动 921973
科研通“疑难数据库(出版商)”最低求助积分说明 833694