YOLO-SRMX: A Lightweight Model for Real-Time Object Detection on Unmanned Aerial Vehicles

计算机科学 遥感 实时计算 人工智能 地质学
作者
Shizhuang Weng,Han Wang,Jiashu Wang,Changming Xu,Ende Zhang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:17 (13): 2313-2313 被引量:5
标识
DOI:10.3390/rs17132313
摘要

Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. To tackle these difficulties, this study introduces YOLO-SRMX, a lightweight real-time object detection framework specifically designed for infrared imagery captured by UAVs. Firstly, the model utilizes ShuffleNetV2 as an efficient lightweight backbone and integrates the novel Multi-Scale Dilated Attention (MSDA) module. This strategy not only facilitates a substantial 46.4% reduction in parameter volume but also, through the flexible adaptation of receptive fields, boosts the model’s robustness and precision in multi-scale object recognition tasks. Secondly, within the neck network, multi-scale feature extraction is facilitated through the design of novel composite convolutions, ConvX and MConv, based on a “split–differentiate–concatenate” paradigm. Furthermore, the lightweight GhostConv is incorporated to reduce model complexity. By synthesizing these principles, a novel composite receptive field lightweight convolution, DRFAConvP, is proposed to further optimize multi-scale feature fusion efficiency and promote model lightweighting. Finally, the Wise-IoU loss function is adopted to replace the traditional bounding box loss. This is coupled with a dynamic non-monotonic focusing mechanism formulated using the concept of outlier degrees. This mechanism intelligently assigns elevated gradient weights to anchor boxes of moderate quality by assessing their relative outlier degree, while concurrently diminishing the gradient contributions from both high-quality and low-quality anchor boxes. Consequently, this approach enhances the model’s localization accuracy for small targets in complex scenes. Experimental evaluations on the HIT-UAV dataset corroborate that YOLO-SRMX achieves an mAP50 of 82.8%, representing a 7.81% improvement over the baseline YOLOv8s model; an F1 score of 80%, marking a 3.9% increase; and a substantial 65.3% reduction in computational cost (GFLOPs). YOLO-SRMX demonstrates an exceptional trade-off between detection accuracy and operational efficiency, thereby underscoring its considerable potential for efficient and precise object detection on resource-constrained UAV platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pengxiangfeng发布了新的文献求助10
1秒前
scott完成签到,获得积分10
1秒前
小铭同学完成签到,获得积分10
1秒前
Jun完成签到,获得积分10
1秒前
1秒前
zhangnannan发布了新的文献求助10
1秒前
zjz完成签到,获得积分20
2秒前
2秒前
牛马婕发布了新的文献求助10
2秒前
ljl发布了新的文献求助10
2秒前
2秒前
centlay发布了新的文献求助30
3秒前
4秒前
4秒前
胡图图完成签到 ,获得积分10
4秒前
5秒前
5秒前
bkagyin应助练习者采纳,获得30
5秒前
5秒前
尼克拉倒完成签到,获得积分10
6秒前
6秒前
6秒前
LEO完成签到,获得积分10
6秒前
嘴角微微仰起笑应助Aqua采纳,获得10
7秒前
淡定从凝完成签到,获得积分10
7秒前
7秒前
乐观摸摸头完成签到 ,获得积分10
7秒前
重要的小丸子完成签到,获得积分10
7秒前
7秒前
rowena完成签到,获得积分10
7秒前
深情安青应助一包辣条采纳,获得10
8秒前
危机的曼香完成签到,获得积分10
8秒前
8秒前
kbj完成签到,获得积分10
8秒前
Archer完成签到,获得积分10
9秒前
SUNYAOSUNYAO发布了新的文献求助10
9秒前
呆萌的源智完成签到,获得积分10
9秒前
夏末发布了新的文献求助10
9秒前
Hotpoter发布了新的文献求助20
9秒前
哈哈哈完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516814
求助须知:如何正确求助?哪些是违规求助? 4609871
关于积分的说明 14518264
捐赠科研通 4546672
什么是DOI,文献DOI怎么找? 2491314
邀请新用户注册赠送积分活动 1473067
关于科研通互助平台的介绍 1444924