炎症
药理学
巨噬细胞
脂多糖
氧化应激
RAC1
免疫系统
单核细胞
医学
免疫学
化学
生物
细胞生物学
生物化学
信号转导
体外
作者
Zhichen Pu,Yuan Gui,Wenhui Wang,Yinping Shui,Haitang Xie,Min Zhao
标识
DOI:10.1142/s0192415x25500193
摘要
Acute lung injury (ALI) can lead to severe respiratory system damage, characterized by extensive inflammation and lung tissue injury. Ophiopogonin D (OD), from Ophiopogon japonicus, has pharmacological effects such as anti-inflammatory and anti-oxidant, hypoglycemic, anti-aging, and immune regulation properties. This study attempts to identify the protective mechanism of OD against ALI by the inhibition of ferroptosis of macrophages. The tissue-specific expression of USP25 in patients with COVID-19 was evaluated using single-cell data from the China National GeneBank and the GSE147507 dataset from Gene Expression Omnibus (GEO). C57BL/6 mice, Murine bone marrow derived macrophages (BMDM) or RAW264.7 cells were induced by Lipopolysaccharide (LPS). OD prevented ALI, and reduced inflammation levels and oxidative stress in mice models. OD significantly decreased the number of monocyte/macrophages (CD11b [Formula: see text]Ly6G-cells) in the peritoneal cavity after ALI induction. OD-mitigated inflammation and oxidative stress of macrophages in the ALI model. OD-reduced ferroptosis of macrophages in a model of ALI through the inhibition of ROS-induced mitochondrial damage. USP25 is significantly expressed in macrophages in patients with COVID-19 using single-cell analysis. OD-suppressed Rac1/NOX1-derived ROS to reduce the mitochondrial damage of macrophages in a model of ALI by the induction of USP25 activity. OD-identified USP25 at 907-VAL and 975-ARG in an ALI model to suppress USP25 Ubiquitination. OD from Ophiopogon japonicus induces USP25 activity to reduce ferroptosis of macrophages in ALI by binding the Rac1 and Nox1 complex. Therefore, it can be concluded that OD may be a potential therapeutic drug for the treatment of ALI.
科研通智能强力驱动
Strongly Powered by AbleSci AI