Prehospital triage of trauma patients: predicting major surgery using artificial intelligence as decision support

医学 急诊分诊台 接收机工作特性 格拉斯哥昏迷指数 神经外科 急诊医学 专业 医疗急救 外科 内科学 病理
作者
Andreas Skov Millarch,Fredrik Folke,Søren Steemann Rudolph,Haytham M Kaafarani,Martin Sillesen
出处
期刊:British Journal of Surgery [Oxford University Press]
卷期号:112 (4) 被引量:1
标识
DOI:10.1093/bjs/znaf058
摘要

Abstract Background Matching the necessary resources and facilities to attend to the needs of trauma patients is traditionally performed by clinicians using criteria-directed triage protocols. In the present study, it was hypothesized that an artificial intelligence (AI) model should be able to predict the need for major surgery based on data available at the scene. Methods Prehospital and in-hospital electronic health record data were available for 4578 patients in the Danish Prehospital Trauma Data set. Data included demographics (age and sex), clinical scores (airway, breathing, circulation, disability (ABCD) and Glasgow Coma Scale scores), and sequential vital signs (heart rate, blood pressure, and oxygen saturation). The data from the first 5, 10, and 20 min of prehospital contact were used for predicting the need for surgery up to 12 h after hospital arrival. Surgeries were stratified into all major surgical procedures and specialty-specific procedures (neurosurgery, abdominal surgery, and vascular surgery). The data set was split into training (70%), validation (20%) and holdout test (10%) data sets. Three hybrid neural networks were trained and performance was evaluated on the holdout test data set using the area under the receiver operating characteristic curve (ROC-AUC). Results Overall, the model achieved an ROC-AUC of 0.80–0.86 for predicting the need for major surgery. For predicting the need for major neurosurgery the ROC-AUC was 0.90–0.95, for predicting the need for major vascular surgery the ROC-AUC was 0.69–0.88, and for predicting the need for major abdominal surgery the ROC-AUC was 0.77–0.84. Conclusion Utilizing AI early in the prehospital phase of a trauma patient’s trajectory can predict specialized surgical needs. This approach has the potential to aid the early triage of trauma patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
njx发布了新的文献求助10
2秒前
刘cl完成签到,获得积分10
2秒前
2秒前
5秒前
英姑应助傲娇宛采纳,获得10
5秒前
6秒前
尊敬尔容发布了新的文献求助10
7秒前
戏子发布了新的文献求助10
7秒前
你好完成签到,获得积分10
10秒前
renwh发布了新的文献求助10
12秒前
13秒前
Lucky发布了新的文献求助40
13秒前
biancaliu发布了新的文献求助10
13秒前
14秒前
njx完成签到,获得积分10
14秒前
CodeCraft应助波粒二象性采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
浮浮世世发布了新的文献求助10
17秒前
20秒前
小鱼完成签到 ,获得积分10
22秒前
22秒前
李爱国应助浮浮世世采纳,获得10
23秒前
26秒前
大模型应助勤劳的冷风采纳,获得10
26秒前
傲娇宛发布了新的文献求助10
27秒前
27秒前
Wang完成签到,获得积分10
28秒前
30秒前
科研通AI6应助Brave采纳,获得10
31秒前
Wang发布了新的文献求助10
31秒前
Cai完成签到 ,获得积分10
33秒前
吴小胖完成签到,获得积分20
37秒前
biancaliu完成签到,获得积分10
38秒前
不配.应助你好采纳,获得200
43秒前
44秒前
oleskarabach发布了新的文献求助10
45秒前
量子星尘发布了新的文献求助10
46秒前
俏皮白云完成签到 ,获得积分10
50秒前
51秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260071
求助须知:如何正确求助?哪些是违规求助? 3792845
关于积分的说明 11896272
捐赠科研通 3440611
什么是DOI,文献DOI怎么找? 1888225
邀请新用户注册赠送积分活动 938953
科研通“疑难数据库(出版商)”最低求助积分说明 844348